Märker Katharina, Xu Chao, Grey Clare P
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom.
J Am Chem Soc. 2020 Oct 14;142(41):17447-17456. doi: 10.1021/jacs.0c06727. Epub 2020 Oct 1.
Lithium-ion batteries (LIBs) are of tremendous importance for our society, but their limited lifetime still poses a great challenge. For a better understanding of battery cycling and degradation, operando analytical measurements are invaluable. In this work, we demonstrate that operando Li nuclear magnetic resonance (NMR) spectroscopy can be applied to full LIBs. We exemplify this on LiNiMnCoO (NMC811)/graphite cells, which are typical high-energy LIBs. Employing industry-standard electrodes, our operando cells show realistic cycling performance at practical rates, which allows us to conduct experiments at different rates and temperatures and to draw conclusions on the performance of LIBs. The NMR experiments monitor processes in both electrodes individually, including Li-ion mobility and its changes with temperature. Moreover, Li metal deposition on graphite is observed at low temperature, which is an important degradation mechanism in LIBs and a severe safety hazard. Our experiments offer unique insights into this Li metal deposition process under different charging conditions.
锂离子电池(LIBs)对我们的社会至关重要,但其有限的寿命仍然构成巨大挑战。为了更好地理解电池的循环和退化,原位分析测量非常宝贵。在这项工作中,我们证明了原位锂核磁共振(NMR)光谱可应用于完整的锂离子电池。我们以LiNiMnCoO(NMC811)/石墨电池为例进行说明,这些电池是典型的高能锂离子电池。采用行业标准电极,我们的原位电池在实际速率下显示出实际的循环性能,这使我们能够在不同速率和温度下进行实验,并得出关于锂离子电池性能的结论。核磁共振实验分别监测两个电极中的过程,包括锂离子迁移率及其随温度的变化。此外,在低温下观察到锂金属在石墨上的沉积,这是锂离子电池中的一种重要退化机制和严重的安全隐患。我们的实验为不同充电条件下的这种锂金属沉积过程提供了独特的见解。