Suppr超能文献

人工智能在小肠病变及其出血风险检测中的应用:新的一步。

Artificial intelligence in detection of small bowel lesions and their bleeding risk: A new step forward.

机构信息

Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy.

Gastroenterology and Endoscopy Unit, Presidio Ospedaliero San Giuseppe Moscati (Aversa, CE) - ASL Caserta, Caserta 81100, Italy.

出版信息

World J Gastroenterol. 2024 May 14;30(18):2482-2484. doi: 10.3748/wjg.v30.i18.2482.

Abstract

The present letter to the editor is related to the study with the title "Automatic detection of small bowel (SB) lesions with different bleeding risk based on deep learning models". Capsule endoscopy (CE) is the main tool to assess SB diseases but it is a time-consuming procedure with a significant error rate. The development of artificial intelligence (AI) in CE could simplify physicians' tasks. The novel deep learning model by Zhang seems to be able to identify various SB lesions and their bleeding risk, and it could pave the way to next perspective studies to better enhance the diagnostic support of AI in the detection of different types of SB lesions in clinical practice.

摘要

这封给编辑的信与题为“基于深度学习模型的自动检测具有不同出血风险的小肠(SB)病变”的研究有关。胶囊内镜(CE)是评估 SB 疾病的主要工具,但它是一个耗时且错误率很高的程序。CE 中人工智能(AI)的发展可以简化医生的任务。Zhang 等人提出的新型深度学习模型似乎能够识别各种 SB 病变及其出血风险,并为进一步的研究铺平道路,以便更好地增强 AI 在临床实践中对不同类型 SB 病变检测的诊断支持。

相似文献

6
Small Bowel Capsule Endoscopy and artificial intelligence: First or second reader?小肠胶囊内镜和人工智能:第一读者还是第二读者?
Best Pract Res Clin Gastroenterol. 2021 Jun-Aug;52-53:101742. doi: 10.1016/j.bpg.2021.101742. Epub 2021 Mar 24.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验