文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用卷积神经网络的人工智能自动检测胶囊内镜图像中的小肠血管扩张症。

Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images.

机构信息

Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan.

AI Medical Service Inc., Tokyo, Japan.

出版信息

Dig Endosc. 2020 Mar;32(3):382-390. doi: 10.1111/den.13507. Epub 2019 Oct 2.


DOI:10.1111/den.13507
PMID:31392767
Abstract

BACKGROUND AND AIM: Although small-bowel angioectasia is reported as the most common cause of bleeding in patients and frequently diagnosed by capsule endoscopy (CE) in patients with obscure gastrointestinal bleeding, a computer-aided detection method has not been established. We developed an artificial intelligence system with deep learning that can automatically detect small-bowel angioectasia in CE images. METHODS: We trained a deep convolutional neural network (CNN) system based on Single Shot Multibox Detector using 2237 CE images of angioectasia. We assessed its diagnostic accuracy by calculating the area under the receiver operating characteristic curve (ROC-AUC), sensitivity, specificity, positive predictive value, and negative predictive value using an independent test set of 10 488 small-bowel images, including 488 images of small-bowel angioectasia. RESULTS: The AUC to detect angioectasia was 0.998. Sensitivity, specificity, positive predictive value, and negative predictive value of CNN were 98.8%, 98.4%, 75.4%, and 99.9%, respectively, at a cut-off value of 0.36 for the probability score. CONCLUSIONS: We developed and validated a new system based on CNN to automatically detect angioectasia in CE images. This may be well applicable to daily clinical practice to reduce the burden of physicians as well as to reduce oversight.

摘要

背景与目的:尽管小肠血管扩张症被报道为导致出血的最常见原因,并且在不明原因胃肠道出血的患者中经常通过胶囊内镜 (CE) 诊断,但尚未建立计算机辅助检测方法。我们开发了一种基于深度学习的人工智能系统,该系统可以自动检测 CE 图像中的小肠血管扩张症。

方法:我们使用 2237 张血管扩张症的 CE 图像训练了一个基于单-shot 多框检测器的深度卷积神经网络 (CNN) 系统。我们使用包括 488 张小肠血管扩张症图像在内的 10488 张小肠图像的独立测试集,通过计算接收者操作特征曲线下的面积 (ROC-AUC)、敏感性、特异性、阳性预测值和阴性预测值来评估其诊断准确性。

结果:检测血管扩张症的 AUC 为 0.998。CNN 的敏感性、特异性、阳性预测值和阴性预测值分别为 98.8%、98.4%、75.4%和 99.9%,概率评分的截断值为 0.36。

结论:我们开发并验证了一种基于 CNN 的新系统,用于自动检测 CE 图像中的血管扩张症。这可能非常适用于日常临床实践,以减轻医生的负担并减少漏诊。

相似文献

[1]
Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images.

Dig Endosc. 2020-3

[2]
Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network.

J Gastroenterol Hepatol. 2019-12-27

[3]
Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network.

Gastrointest Endosc. 2018-10-25

[4]
Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network.

BMJ Open Gastroenterol. 2021-9

[5]
Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network.

Gastrointest Endosc. 2020-7

[6]
Deep Learning and Device-Assisted Enteroscopy: Automatic Detection of Gastrointestinal Angioectasia.

Medicina (Kaunas). 2021-12-18

[7]
Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study.

Gastrointest Endosc. 2021-1

[8]
Improved classification and localization approach to small bowel capsule endoscopy using convolutional neural network.

Dig Endosc. 2021-5

[9]
Automatic Detection of Small Intestinal Hookworms in Capsule Endoscopy Images Based on a Convolutional Neural Network.

Gastroenterol Res Pract. 2021-11-24

[10]
Design of a Convolutional Neural Network as a Deep Learning Tool for the Automatic Classification of Small-Bowel Cleansing in Capsule Endoscopy.

Medicina (Kaunas). 2023-4-21

引用本文的文献

[1]
Utilizing Deep Convolutional Neural Networks and Hybrid Classification for Gastrointestinal Disease Diagnosis from Capsule Endoscopy Images.

J Biomed Phys Eng. 2025-8-1

[2]
A review on computer-aided diagnostic system to classify the disorders of the gastrointestinal tract.

Eur J Med Res. 2025-7-26

[3]
Capsule Endoscopy: Current Trends, Technological Advancements, and Future Perspectives in Gastrointestinal Diagnostics.

Bioengineering (Basel). 2025-6-4

[4]
Classification of pediatric video capsule endoscopy images for small bowel abnormalities using deep learning models.

World J Gastroenterol. 2025-6-7

[5]
Unmet Needs of Artificial Intelligence in Small Bowel Capsule Endoscopy.

Diagnostics (Basel). 2025-4-25

[6]
Artificial Intelligence-Assisted Capsule Endoscopy Versus Conventional Capsule Endoscopy for Detection of Small Bowel Lesions: A Systematic Review and Meta-Analysis.

J Gastroenterol Hepatol. 2025-5

[7]
A Multi-task Neural Network for Image Recognition in Magnetically Controlled Capsule Endoscopy.

Dig Dis Sci. 2024-11

[8]
Deep Learning for Automatic Identification and Characterization of the Bleeding Potential of Enteric Protruding Lesions in Capsule Endoscopy.

Gastro Hep Adv. 2022-4-18

[9]
Role of Artificial Intelligence in Endoscopic Intervention: A Clinical Review.

J Community Hosp Intern Med Perspect. 2024-5-7

[10]
Deep learning and capsule endoscopy: Automatic multi-brand and multi-device panendoscopic detection of vascular lesions.

Endosc Int Open. 2024-4-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索