Suppr超能文献

胶囊内镜使用深度学习模型对小肠疾病和正常变异进行胃肠病学家级别的识别。

Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model.

机构信息

Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Ankon Medical Technologies Co, Ltd, Shanghai, China.

出版信息

Gastroenterology. 2019 Oct;157(4):1044-1054.e5. doi: 10.1053/j.gastro.2019.06.025. Epub 2019 Jun 25.

Abstract

BACKGROUND & AIMS: Capsule endoscopy has revolutionized investigation of the small bowel. However, this technique produces a video that is 8-10 hours long, so analysis is time consuming for gastroenterologists. Deep convolutional neural networks (CNNs) can recognize specific images among a large variety. We aimed to develop a CNN-based algorithm to assist in the evaluation of small bowel capsule endoscopy (SB-CE) images.

METHODS

We collected 113,426,569 images from 6970 patients who had SB-CE at 77 medical centers from July 2016 through July 2018. A CNN-based auxiliary reading model was trained to differentiate abnormal from normal images using 158,235 SB-CE images from 1970 patients. Images were categorized as normal, inflammation, ulcer, polyps, lymphangiectasia, bleeding, vascular disease, protruding lesion, lymphatic follicular hyperplasia, diverticulum, parasite, and other. The model was further validated in 5000 patients (no patient was overlap with the 1970 patients in the training set); the same patients were evaluated by conventional analysis and CNN-based auxiliary analysis by 20 gastroenterologists. If there was agreement in image categorization between the conventional analysis and CNN model, no further evaluation was performed. If there was disagreement between the conventional analysis and CNN model, the gastroenterologists re-evaluated the image to confirm or reject the CNN categorization.

RESULTS

In the SB-CE images from the validation set, 4206 abnormalities in 3280 patients were identified after final consensus evaluation. The CNN-based auxiliary model identified abnormalities with 99.88% sensitivity in the per-patient analysis (95% CI, 99.67-99.96) and 99.90% sensitivity in the per-lesion analysis (95% CI, 99.74-99.97). Conventional reading by the gastroenterologists identified abnormalities with 74.57% sensitivity (95% CI, 73.05-76.03) in the per-patient analysis and 76.89% in the per-lesion analysis (95% CI, 75.58-78.15). The mean reading time per patient was 96.6 ± 22.53 minutes by conventional reading and 5.9 ± 2.23 minutes by CNN-based auxiliary reading (P < .001).

CONCLUSIONS

We validated the ability of a CNN-based algorithm to identify abnormalities in SB-CE images. The CNN-based auxiliary model identified abnormalities with higher levels of sensitivity and significantly shorter reading times than conventional analysis by gastroenterologists. This algorithm provides an important tool to help gastroenterologists analyze SB-CE images more efficiently and more accurately.

摘要

背景与目的

胶囊内镜技术已经彻底革新了小肠检查。然而,这种技术产生的视频时长为 8-10 小时,因此对胃肠病学家来说,分析工作非常耗时。深度卷积神经网络(CNN)可以识别大量图像中的特定图像。我们旨在开发一种基于 CNN 的算法,以协助评估小肠胶囊内镜(SB-CE)图像。

方法

我们从 2016 年 7 月至 2018 年 7 月在 77 家医疗中心进行的 6970 例 SB-CE 患者中收集了 113426569 张图像。使用来自 1970 例患者的 158235 张 SB-CE 图像,基于 CNN 的辅助阅读模型用于区分异常和正常图像。图像被分为正常、炎症、溃疡、息肉、淋巴管扩张、出血、血管疾病、突出病变、淋巴滤泡增生、憩室、寄生虫和其他。该模型在 5000 例患者中进一步得到验证(没有患者与训练集中的 1970 例患者重叠);由 20 名胃肠病学家对相同的患者进行常规分析和基于 CNN 的辅助分析。如果常规分析和 CNN 模型在图像分类上达成一致,则无需进一步评估。如果常规分析和 CNN 模型之间存在分歧,胃肠病学家会重新评估图像以确认或拒绝 CNN 分类。

结果

在验证集中的 SB-CE 图像中,经过最终共识评估,在 3280 例患者中发现了 4206 处异常。基于 CNN 的辅助模型在每位患者的分析中以 99.88%(95%CI,99.67-99.96)的敏感性和每位病变的分析中以 99.90%(95%CI,99.74-99.97)的敏感性识别出异常。胃肠病学家进行的常规阅读在每位患者的分析中以 74.57%(95%CI,73.05-76.03)的敏感性和每位病变的分析中以 76.89%(95%CI,75.58-78.15)的敏感性识别出异常。常规阅读每位患者的平均阅读时间为 96.6 ± 22.53 分钟,而基于 CNN 的辅助阅读为 5.9 ± 2.23 分钟(P<.001)。

结论

我们验证了基于 CNN 的算法识别 SB-CE 图像中异常的能力。基于 CNN 的辅助模型在识别异常方面具有比胃肠病学家的常规分析更高的敏感性和显著更短的阅读时间。该算法为帮助胃肠病学家更高效、更准确地分析 SB-CE 图像提供了一个重要工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验