Suppr超能文献

使用预测性数学模型对奶酪琼脂培养基中[具体物质未给出]的表面生长进行表征。

Characterisation of the surface growth of in cheese agar media using predictive mathematical models.

作者信息

Koňuchová Martina, Boháčiková Agáta, Valík Ľubomír

机构信息

Institute of Food Sciences and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia.

出版信息

Heliyon. 2024 May 7;10(9):e30812. doi: 10.1016/j.heliyon.2024.e30812. eCollection 2024 May 15.

Abstract

The main objective of this work was to characterise the mycelial growth of , one of the fungal contaminants that appear frequently in the artisan cheese production environment. The study uses primary Baranyi and Huang models to compare their parameters and predict on cheese-based medium (CBA) under diverse environmental conditions (temperature range from 6 to 37 °C and 0 and 1 % NaCl concentration). However, the Baranyi model consistently estimated longer lag phases and higher surface growth rates () than the Huang model; both models showed adequate best-fit performance (exactly with the mean coefficient of determination = (0.993 ± 0.020 × 10). The groups of primary growth parameters were analysed against temperature using the cardinal model (CM) with the following main outputs. The optimal surface growth rates () on CBA were 6.8 and 6.5 mm/d calculated with the Baranyi and Huang models, respectively. They were reduced by approximately 46 % on the surface of the agar medium when 1 % NaCl was added. was estimated in a very narrow range of 32.1-32.5 °C from both primary data sets (0 % and 1 % NaCl). Similarly, values of 37.2 °C and 37.3 °C were estimated for the Baranyi and Huang models, respectively; however, they decreased at 2 °C in CBA with 1 % NaCl ( = 35.1 °C). The application of CM for sgr provided an estimation of the parameter with negative values that are considered only as a theoretical output. The results provide insight into the modelling and prediction of fungi growth as a function of time and salt concentration, including the times to detect visible mycelial growth of . The mere quantification of this phenomenon can be useful for practice. Adjusting the frequency of the cheese surface washing step with a salt solution at the early stage of ripening properly can prevent the growth of not only fast fungal growers.

摘要

这项工作的主要目标是表征 ,它是手工奶酪生产环境中经常出现的真菌污染物之一的菌丝体生长情况。该研究使用了原始的巴拉尼模型和黄模型来比较它们的参数,并预测在不同环境条件下(温度范围为6至37°C,NaCl浓度为0和1%)基于奶酪的培养基(CBA)上的生长情况。然而,与黄模型相比,巴拉尼模型始终估计出更长的延迟期和更高的表面生长速率();两个模型均显示出足够的最佳拟合性能(平均决定系数 = (0.993 ± 0.020 × 10))。使用基数模型(CM)针对温度分析了主要生长参数组,得出以下主要结果。使用巴拉尼模型和黄模型计算得出,CBA上的最佳表面生长速率()分别为6.8和6.5毫米/天。当添加1% NaCl时,琼脂培养基表面的生长速率降低了约46%。从两个原始数据集(0%和1% NaCl)估计出的 在非常窄的32.1 - 32.5°C范围内。同样,巴拉尼模型和黄模型分别估计出的 值为37.2°C和37.3°C;然而,在含有1% NaCl的CBA中,温度为2°C时它们降低了( = 35.1°C)。CM对sgr的应用提供了参数 的估计值,其为负值,仅作为理论输出。这些结果为真菌生长随时间和盐浓度变化的建模和预测提供了见解,包括检测 可见菌丝体生长的时间。对这一现象的量化本身在实践中可能会很有用。在成熟早期适当调整用盐溶液清洗奶酪表面步骤的频率,不仅可以防止快速生长的真菌生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc9/11101853/817ddcad5f6b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验