Suppr超能文献

基于机器学习对肥厚型心肌病患者心血管结局的判别

Machine Learning-Based Discrimination of Cardiovascular Outcomes in Patients With Hypertrophic Cardiomyopathy.

作者信息

Rhee Tae-Min, Ko Yeon-Kyoung, Kim Hyung-Kwan, Lee Seung-Bo, Kim Bong-Seong, Choi Hong-Mi, Hwang In-Chang, Park Jun-Bean, Yoon Yeonyee E, Kim Yong-Jin, Cho Goo-Yeong

机构信息

Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.

Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea.

出版信息

JACC Asia. 2024 Feb 20;4(5):375-386. doi: 10.1016/j.jacasi.2023.12.001. eCollection 2024 May.

Abstract

BACKGROUND

Current risk stratification strategies for patients with hypertrophic cardiomyopathy (HCM) are limited to traditional methodologies.

OBJECTIVES

The authors aimed to establish machine learning (ML)-based models to discriminate major cardiovascular events in patients with HCM.

METHODS

We enrolled consecutive HCM patients from 2 tertiary referral centers and used 25 clinical and echocardiographic features to discriminate major adverse cardiovascular events (MACE), including all-cause death, admission for heart failure (HF-adm), and stroke. The best model was selected for each outcome using the area under the receiver operating characteristic curve (AUROC) with 20-fold cross-validation. After testing in the external validation cohort, the relative importance of features in discriminating each outcome was determined using the SHapley Additive exPlanations (SHAP) method.

RESULTS

In total, 2,111 patients with HCM (age 61.4 ± 13.6 years; 67.6% men) were analyzed. During the median 4.0 years of follow-up, MACE occurred in 341 patients (16.2%). Among the 4 ML models, the logistic regression model achieved the best AUROC of 0.800 (95% CI: 0.760-0.841) for MACE, 0.789 (95% CI: 0.736-0.841) for all-cause death, 0.798 (95% CI: 0.736-0.860) for HF-adm, and 0.807 (95% CI: 0.754-0.859) for stroke. The discriminant ability of the logistic regression model remained excellent when applied to the external validation cohort for MACE (AUROC = 0.768), all-cause death (AUROC = 0.750), and HF-adm (AUROC = 0.806). The SHAP analysis identified left atrial diameter and hypertension as important variables for all outcomes of interest.

CONCLUSIONS

The proposed ML models incorporating various phenotypes from patients with HCM accurately discriminated adverse cardiovascular events and provided variables with high importance for each outcome.

摘要

背景

目前肥厚型心肌病(HCM)患者的风险分层策略仅限于传统方法。

目的

作者旨在建立基于机器学习(ML)的模型,以区分HCM患者的主要心血管事件。

方法

我们从2个三级转诊中心纳入连续的HCM患者,并使用25项临床和超声心动图特征来区分主要不良心血管事件(MACE),包括全因死亡、心力衰竭入院(HF-adm)和中风。使用接受者操作特征曲线下面积(AUROC)和20倍交叉验证为每个结局选择最佳模型。在外部验证队列中进行测试后,使用SHapley加性解释(SHAP)方法确定各特征在区分每个结局中的相对重要性。

结果

总共分析了2111例HCM患者(年龄61.4±13.6岁;67.6%为男性)。在中位4.0年的随访期间,341例患者(16.2%)发生了MACE。在4个ML模型中,逻辑回归模型对MACE的AUROC最佳,为0.800(95%CI:0.760-0.841),对全因死亡为0.789(95%CI:0.736-0.841),对HF-adm为0.798(95%CI:0.736-0.860),对中风为0.807(95%CI:0.754-0.859)。当应用于MACE(AUROC = 0.768)、全因死亡(AUROC = 0.750)和HF-adm(AUROC = 0.806)的外部验证队列时,逻辑回归模型的判别能力仍然出色。SHAP分析确定左心房直径和高血压是所有感兴趣结局的重要变量。

结论

所提出的包含HCM患者各种表型的ML模型准确区分了不良心血管事件,并为每个结局提供了重要性高的变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5ec/11099823/31f8bda30b71/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验