Suppr超能文献

机器学习在医学中的应用:数据预处理、超参数调优和模型比较技术的实用介绍。

Machine learning in medicine: a practical introduction to techniques for data pre-processing, hyperparameter tuning, and model comparison.

机构信息

Department of Obstetrics and Gynecology, University Breast Unit, Heidelberg University Hospital, Heidelberg, Germany.

MD Anderson Center for INSPiRED Cancer Care, The University of Texas MD Anderson Cancer Center, Houston, USA.

出版信息

BMC Med Res Methodol. 2022 Nov 1;22(1):282. doi: 10.1186/s12874-022-01758-8.

Abstract

BACKGROUND

There is growing enthusiasm for the application of machine learning (ML) and artificial intelligence (AI) techniques to clinical research and practice. However, instructions on how to develop robust high-quality ML and AI in medicine are scarce. In this paper, we provide a practical example of techniques that facilitate the development of high-quality ML systems including data pre-processing, hyperparameter tuning, and model comparison using open-source software and data.

METHODS

We used open-source software and a publicly available dataset to train and validate multiple ML models to classify breast masses into benign or malignant using mammography image features and patient age. We compared algorithm predictions to the ground truth of histopathologic evaluation. We provide step-by-step instructions with accompanying code lines.

FINDINGS

Performance of the five algorithms at classifying breast masses as benign or malignant based on mammography image features and patient age was statistically equivalent (P > 0.05). Area under the receiver operating characteristics curve (AUROC) for the logistic regression with elastic net penalty was 0.89 (95% CI 0.85 - 0.94), for the Extreme Gradient Boosting Tree 0.88 (95% CI 0.83 - 0.93), for the Multivariate Adaptive Regression Spline algorithm 0.88 (95% CI 0.83 - 0.93), for the Support Vector Machine 0.89 (95% CI 0.84 - 0.93), and for the neural network 0.89 (95% CI 0.84 - 0.93).

INTERPRETATION

Our paper allows clinicians and medical researchers who are interested in using ML algorithms to understand and recreate the elements of a comprehensive ML analysis. Following our instructions may help to improve model generalizability and reproducibility in medical ML studies.

摘要

背景

机器学习(ML)和人工智能(AI)技术在临床研究和实践中的应用越来越受到关注。然而,关于如何开发稳健的高质量 ML 和 AI 的指导却很少。在本文中,我们提供了一个实用的示例,介绍了如何使用开源软件和数据来进行数据预处理、超参数调整和模型比较等技术,以开发高质量的 ML 系统。

方法

我们使用开源软件和公开可用的数据集来训练和验证多个 ML 模型,这些模型使用乳腺 X 光图像特征和患者年龄来对乳腺肿块进行良性或恶性分类。我们将算法预测与组织病理学评估的真实情况进行了比较。我们提供了带有相应代码行的逐步说明。

结果

基于乳腺 X 光图像特征和患者年龄,五种算法对乳腺肿块进行良性或恶性分类的性能在统计学上是等效的(P>0.05)。逻辑回归与弹性网络惩罚的受试者工作特征曲线下面积(AUROC)为 0.89(95%CI 0.85-0.94),极端梯度提升树为 0.88(95%CI 0.83-0.93),多变量自适应回归样条算法为 0.88(95%CI 0.83-0.93),支持向量机为 0.89(95%CI 0.84-0.93),神经网络为 0.89(95%CI 0.84-0.93)。

解释

本文为有兴趣使用 ML 算法的临床医生和医学研究人员提供了理解和重现全面 ML 分析要素的途径。遵循我们的说明可能有助于提高医学 ML 研究中模型的通用性和可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a7c/9624048/172a870ada67/12874_2022_1758_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验