Akram Muhammad Junaid, Nawaz Asad, Yuxing Yuan, Zhang Jinpeng, Haixin Huang, Liu Lingjuan, Qian Xu, Tian Jie
Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
Key Laboratory of Children's Important Organ Development and Diseases, Children's Hospital of Chongqing Medical University, Chongqing Municipal Health Commission, Chongqing, China.
Front Med (Lausanne). 2025 Jul 25;12:1602077. doi: 10.3389/fmed.2025.1602077. eCollection 2025.
BACKGROUND: Cardiomyopathy and heart failure are among the most critical challenges in modern cardiology, with increasing attention to the integration of machine learning (ML) and artificial intelligence (AI) for diagnostics, risk prediction, and therapeutic strategies. This study was aimed at evaluating global research trends, influential contributions, and emerging themes in the domain of cardiomyopathy and heart failure from 2005 to 2024. METHODOLOGY: A comprehensive bibliometric analysis was conducted using the Web of Science Core Collection (WoSCC) database. The study utilized the R- package bibliometrix-biblioshiny, VOSviewer, Scimago Graphica and CiteSpace to analyze the publications on cardiomyopathy, heart failure, machine learning, and artificial intelligence. Key metrics examined included top institutions, countries, journals, keywords, co-authorship networks, and keyword co-occurrence patterns. Additionally, the analysis evaluated publication counts, citation trends, H-index, and collaboration metrics to identify research trends and emerging themes in the field. RESULTS: A total of 2,110 publications retrieved from the last 20 years were included in the analysis. The United States of America (USA), China, and the United Kingdom (UK), emerged as leading contributors, with institutions such as Mayo Clinic and Harvard University producing high-impact research. Dominant keywords included "heart failure," "risk," "diagnosis," and "artificial intelligence," reflecting the increasing reliance on ML for predictive analytics. Thematic evolution revealed a transition from traditional classification methods to advanced techniques, including feature selection and proteomics. Influential studies, including those by Friedman PA, Noseworthy PA, and Attia ZI, showcased the transformative potential of AI in cardiology. Global collaboration networks underscored strong partnerships but highlighted disparities in contributions from low-income regions. CONCLUSION: This analysis highlights the dynamic evolution of cardiomyopathy research, emphasizing the critical role of ML and AI in advancing diagnostics and therapeutic strategies. Future research should address challenges in scalability, data standardization, and ethical considerations to ensure equitable access and implementation of these technologies, particularly in underrepresented regions.
背景:心肌病和心力衰竭是现代心脏病学中最严峻的挑战之一,机器学习(ML)和人工智能(AI)在诊断、风险预测及治疗策略方面的整合受到越来越多的关注。本研究旨在评估2005年至2024年心肌病和心力衰竭领域的全球研究趋势、有影响力的贡献及新兴主题。 方法:使用科学引文索引核心合集(WoSCC)数据库进行全面的文献计量分析。该研究利用R包bibliometrix-biblioshiny、VOSviewer、Scimago Graphica和CiteSpace来分析关于心肌病、心力衰竭、机器学习和人工智能的出版物。所考察的关键指标包括顶尖机构、国家、期刊、关键词、共同作者网络以及关键词共现模式。此外,该分析评估了出版物数量、引文趋势、H指数和合作指标,以确定该领域的研究趋势和新兴主题。 结果:分析纳入了从过去20年检索到的总共2110篇出版物。美国、中国和英国成为主要贡献者,梅奥诊所和哈佛大学等机构开展了具有高影响力的研究。主要关键词包括“心力衰竭”“风险”“诊断”和“人工智能”,这反映出在预测分析中对机器学习的依赖日益增加。主题演变显示从传统分类方法向先进技术的转变,包括特征选择和蛋白质组学。有影响力的研究,包括弗里德曼·PA、诺斯沃西·PA和阿提亚·ZI等人的研究,展示了人工智能在心脏病学中的变革潜力。全球合作网络强调了牢固的伙伴关系,但也突出了低收入地区贡献的差异。 结论:该分析突出了心肌病研究的动态演变,强调了机器学习和人工智能在推进诊断和治疗策略方面的关键作用。未来的研究应应对可扩展性、数据标准化和伦理考量方面的挑战,以确保这些技术的公平获取和实施,特别是在代表性不足的地区。
Front Med (Lausanne). 2025-7-25
Front Med (Lausanne). 2025-7-29
Quant Imaging Med Surg. 2025-7-1
Front Med (Lausanne). 2025-7-1