文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的心肌病和心力衰竭研究洞察:2005年至2024年的文献计量分析

Machine learning based insights into cardiomyopathy and heart failure research: a bibliometric analysis from 2005 to 2024.

作者信息

Akram Muhammad Junaid, Nawaz Asad, Yuxing Yuan, Zhang Jinpeng, Haixin Huang, Liu Lingjuan, Qian Xu, Tian Jie

机构信息

Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.

Key Laboratory of Children's Important Organ Development and Diseases, Children's Hospital of Chongqing Medical University, Chongqing Municipal Health Commission, Chongqing, China.

出版信息

Front Med (Lausanne). 2025 Jul 25;12:1602077. doi: 10.3389/fmed.2025.1602077. eCollection 2025.


DOI:10.3389/fmed.2025.1602077
PMID:40786090
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12331722/
Abstract

BACKGROUND: Cardiomyopathy and heart failure are among the most critical challenges in modern cardiology, with increasing attention to the integration of machine learning (ML) and artificial intelligence (AI) for diagnostics, risk prediction, and therapeutic strategies. This study was aimed at evaluating global research trends, influential contributions, and emerging themes in the domain of cardiomyopathy and heart failure from 2005 to 2024. METHODOLOGY: A comprehensive bibliometric analysis was conducted using the Web of Science Core Collection (WoSCC) database. The study utilized the R- package bibliometrix-biblioshiny, VOSviewer, Scimago Graphica and CiteSpace to analyze the publications on cardiomyopathy, heart failure, machine learning, and artificial intelligence. Key metrics examined included top institutions, countries, journals, keywords, co-authorship networks, and keyword co-occurrence patterns. Additionally, the analysis evaluated publication counts, citation trends, H-index, and collaboration metrics to identify research trends and emerging themes in the field. RESULTS: A total of 2,110 publications retrieved from the last 20 years were included in the analysis. The United States of America (USA), China, and the United Kingdom (UK), emerged as leading contributors, with institutions such as Mayo Clinic and Harvard University producing high-impact research. Dominant keywords included "heart failure," "risk," "diagnosis," and "artificial intelligence," reflecting the increasing reliance on ML for predictive analytics. Thematic evolution revealed a transition from traditional classification methods to advanced techniques, including feature selection and proteomics. Influential studies, including those by Friedman PA, Noseworthy PA, and Attia ZI, showcased the transformative potential of AI in cardiology. Global collaboration networks underscored strong partnerships but highlighted disparities in contributions from low-income regions. CONCLUSION: This analysis highlights the dynamic evolution of cardiomyopathy research, emphasizing the critical role of ML and AI in advancing diagnostics and therapeutic strategies. Future research should address challenges in scalability, data standardization, and ethical considerations to ensure equitable access and implementation of these technologies, particularly in underrepresented regions.

摘要

背景:心肌病和心力衰竭是现代心脏病学中最严峻的挑战之一,机器学习(ML)和人工智能(AI)在诊断、风险预测及治疗策略方面的整合受到越来越多的关注。本研究旨在评估2005年至2024年心肌病和心力衰竭领域的全球研究趋势、有影响力的贡献及新兴主题。 方法:使用科学引文索引核心合集(WoSCC)数据库进行全面的文献计量分析。该研究利用R包bibliometrix-biblioshiny、VOSviewer、Scimago Graphica和CiteSpace来分析关于心肌病、心力衰竭、机器学习和人工智能的出版物。所考察的关键指标包括顶尖机构、国家、期刊、关键词、共同作者网络以及关键词共现模式。此外,该分析评估了出版物数量、引文趋势、H指数和合作指标,以确定该领域的研究趋势和新兴主题。 结果:分析纳入了从过去20年检索到的总共2110篇出版物。美国、中国和英国成为主要贡献者,梅奥诊所和哈佛大学等机构开展了具有高影响力的研究。主要关键词包括“心力衰竭”“风险”“诊断”和“人工智能”,这反映出在预测分析中对机器学习的依赖日益增加。主题演变显示从传统分类方法向先进技术的转变,包括特征选择和蛋白质组学。有影响力的研究,包括弗里德曼·PA、诺斯沃西·PA和阿提亚·ZI等人的研究,展示了人工智能在心脏病学中的变革潜力。全球合作网络强调了牢固的伙伴关系,但也突出了低收入地区贡献的差异。 结论:该分析突出了心肌病研究的动态演变,强调了机器学习和人工智能在推进诊断和治疗策略方面的关键作用。未来的研究应应对可扩展性、数据标准化和伦理考量方面的挑战,以确保这些技术的公平获取和实施,特别是在代表性不足的地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/a2fc8aa07a4e/fmed-12-1602077-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/ffb70bad4f08/fmed-12-1602077-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/1e8dd642aef2/fmed-12-1602077-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/bee7efb5e40b/fmed-12-1602077-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/b1b163f82523/fmed-12-1602077-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/7b5d0c748dc5/fmed-12-1602077-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/527a421f6e95/fmed-12-1602077-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/a2fc8aa07a4e/fmed-12-1602077-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/ffb70bad4f08/fmed-12-1602077-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/1e8dd642aef2/fmed-12-1602077-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/bee7efb5e40b/fmed-12-1602077-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/b1b163f82523/fmed-12-1602077-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/7b5d0c748dc5/fmed-12-1602077-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/527a421f6e95/fmed-12-1602077-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c807/12331722/a2fc8aa07a4e/fmed-12-1602077-g007.jpg

相似文献

[1]
Machine learning based insights into cardiomyopathy and heart failure research: a bibliometric analysis from 2005 to 2024.

Front Med (Lausanne). 2025-7-25

[2]
Research status, hotspots and perspectives of artificial intelligence applied to pain management: a bibliometric and visual analysis.

Updates Surg. 2025-6-28

[3]
Data-driven trends in critical care informatics: a bibliometric analysis of global collaborations using the MIMIC database (2004-2024).

Comput Biol Med. 2025-9

[4]
Application of artificial intelligence in echocardiography from 2009 to 2024: a bibliometric analysis.

Front Med (Lausanne). 2025-7-29

[5]
Application of non-invasive imaging in myocardial infarction: a bibliometric analysis from January 2003 to December 2022.

Quant Imaging Med Surg. 2025-7-1

[6]
A bibliometric analysis of research trends in mesenchymal stem cell therapy for neonatal bronchopulmonary dysplasia: 2004-2024.

Front Pediatr. 2025-6-3

[7]
Artificial intelligence in ophthalmology: a bibliometric analysis of the 5-year trends in literature.

Front Med (Lausanne). 2025-7-1

[8]
Driving innovations in cancer research through spatial metabolomics: a bibliometric review of trends and hotspot.

Front Immunol. 2025-6-10

[9]
Emerging trends in Alzheimer's disease diagnosis and prediction using artificial intelligence: A bibliometric analysis of the top cited 100 articles.

Digit Health. 2025-7-17

[10]
Global research trends and hotspots in prognostic prediction models for pancreatic cancer: a bibliometric analysis.

Front Oncol. 2025-7-10

本文引用的文献

[1]
Author Correction: External validation of artificial intelligence for detection of heart failure with preserved ejection fraction.

Nat Commun. 2025-4-17

[2]
Development and validation of a machine learning model for online predicting the risk of in heart failure: based on the routine blood test and their derived parameters.

Front Cardiovasc Med. 2025-3-17

[3]
Artificial intelligence and global health equity.

BMJ. 2024-10-11

[4]
The Role of Artificial Intelligence and Machine Learning in Cardiovascular Imaging and Diagnosis.

Cureus. 2024-9-2

[5]
Application of Artificial Intelligence in Cardiology: A Bibliometric Analysis.

Cureus. 2024-8-15

[6]
Explainable machine learning for predicting 30-day readmission in acute heart failure patients.

iScience. 2024-6-15

[7]
Transforming Cardiovascular Care With Artificial Intelligence: From Discovery to Practice: JACC State-of-the-Art Review.

J Am Coll Cardiol. 2024-7-2

[8]
New insights gained from cellular landscape changes in myocarditis and inflammatory cardiomyopathy.

Heart Fail Rev. 2024-9

[9]
[Heart failure with reduced left ventricular ejection fraction (HFrEF, HFmrEF)].

Ther Umsch. 2024-4

[10]
Machine Learning-Based Discrimination of Cardiovascular Outcomes in Patients With Hypertrophic Cardiomyopathy.

JACC Asia. 2024-2-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索