Suppr超能文献

细胞器接触位点按需进行固醇生物合成的分子机制。

The molecular mechanism of on-demand sterol biosynthesis at organelle contact sites.

作者信息

Zung Naama, Aravindan Nitya, Boshnakovska Angela, Valenti Rosario, Preminger Noga, Jonas Felix, Yaakov Gilad, Willoughby Mathilda M, Homberg Bettina, Keller Jenny, Kupervaser Meital, Dezorella Nili, Dadosh Tali, Wolf Sharon G, Itkin Maxim, Malitsky Sergey, Brandis Alexander, Barkai Naama, Fernández-Busnadiego Rubén, Reddi Amit R, Rehling Peter, Rapaport Doron, Schuldiner Maya

机构信息

Department of Molecular Genetics, Weizmann Institute of Science, Israel.

Interfaculty Institute of Biochemistry, University of Tuebingen, Germany.

出版信息

bioRxiv. 2024 May 12:2024.05.09.593285. doi: 10.1101/2024.05.09.593285.

Abstract

Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.

摘要

接触位点是两个细胞器之间的特殊邻近区域,对于细胞器的通讯和协调至关重要。内质网(ER)与其他细胞器之间接触的形成依赖于富含固醇的独特膜环境。然而,这些富含固醇的结构域是如何形成和维持的尚不清楚。我们发现酵母膜蛋白Yet3,即人类BAP31的同源物,定位于多个内质网接触位点。我们表明,Yet3与角鲨烯后麦角固醇生物合成途径的所有酶相互作用,并招募它们来创建富含固醇的结构域。内质网接触位点处固醇水平的增加会导致其从质膜中耗尽,从而引发补偿反应并改变细胞代谢。我们的数据表明,Yet3在接触位点按需提供固醇,从而塑造细胞器的结构和功能。对该蛋白质功能的分子理解为BAP31在发育和病理学中的作用提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e2f/11100823/3ec8b9131e90/nihpp-2024.05.09.593285v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验