文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

线粒体复合物组揭示了蛋白质输入的质量控制途径。

Mitochondrial complexome reveals quality-control pathways of protein import.

机构信息

Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.

出版信息

Nature. 2023 Feb;614(7946):153-159. doi: 10.1038/s41586-022-05641-w. Epub 2023 Jan 25.


DOI:10.1038/s41586-022-05641-w
PMID:36697829
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9892010/
Abstract

Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases. The composition of the mitochondrial proteome has been characterized; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.

摘要

线粒体在细胞能量学、代谢、信号转导和质量控制中起着至关重要的作用。它们包含大约 1000 种不同的蛋白质,这些蛋白质通常组装成复合物和超复合物,如呼吸复合物和前体蛋白转位酶。线粒体蛋白质组的组成已经得到了描述;然而,对于蛋白质组的大部分,线粒体蛋白组装成稳定和动态的复合物的组织方式还知之甚少。在这里,我们使用超过 90%的酵母线粒体蛋白质组的高分辨率复合物组学分析(称为 MitCOM),报告了线粒体蛋白组装体的定量作图。对 MitCOM 数据集的分析解决了 >5200 个蛋白质峰,每个蛋白质平均有 6 个峰,并证明了线粒体蛋白组装体具有明显的复杂性,具有呼吸、代谢、生物发生、动态、调节和氧化还原过程的不同表现。我们检测到了胞质核糖体线粒体受体、抑制素支架和呼吸复合物的相互作用者。鉴定在线粒体蛋白进入门操作的质量控制因素揭示了前体蛋白泛素化、去泛素化和降解的途径。肽基-tRNA 水解酶 Pth2 与进入门之间的相互作用导致了前体蛋白的组成性去除途径的阐明。MitCOM 数据集——可通过交互式配置文件查看器访问——是鉴定、组织和相互作用线粒体机器和途径的综合资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/06eac2a86c9b/41586_2022_5641_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/fd55111f9c4b/41586_2022_5641_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/65d5055dfa87/41586_2022_5641_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/678730a739bb/41586_2022_5641_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/c6a653862af3/41586_2022_5641_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/e8259293c267/41586_2022_5641_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/2c1b7929fd8a/41586_2022_5641_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/12f00aefeab7/41586_2022_5641_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/7036e3593b47/41586_2022_5641_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/a23bd5423ec4/41586_2022_5641_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/bce8aff32810/41586_2022_5641_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/d142f79405b1/41586_2022_5641_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/42f9bf8ddcd6/41586_2022_5641_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/7d2313b295b3/41586_2022_5641_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/d6fa992e943d/41586_2022_5641_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/06eac2a86c9b/41586_2022_5641_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/fd55111f9c4b/41586_2022_5641_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/65d5055dfa87/41586_2022_5641_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/678730a739bb/41586_2022_5641_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/c6a653862af3/41586_2022_5641_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/e8259293c267/41586_2022_5641_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/2c1b7929fd8a/41586_2022_5641_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/12f00aefeab7/41586_2022_5641_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/7036e3593b47/41586_2022_5641_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/a23bd5423ec4/41586_2022_5641_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/bce8aff32810/41586_2022_5641_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/d142f79405b1/41586_2022_5641_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/42f9bf8ddcd6/41586_2022_5641_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/7d2313b295b3/41586_2022_5641_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/d6fa992e943d/41586_2022_5641_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ea/9892010/06eac2a86c9b/41586_2022_5641_Fig15_ESM.jpg

相似文献

[1]
Mitochondrial complexome reveals quality-control pathways of protein import.

Nature. 2023-2

[2]
Recruitment of Cytosolic J-Proteins by TOM Receptors Promotes Mitochondrial Protein Biogenesis.

Cell Rep. 2018-11-20

[3]
Regulation of mitochondrial protein import by cytosolic kinases.

Cell. 2011-1-6

[4]
Coupling of import and assembly pathways in mitochondrial protein biogenesis.

Biol Chem. 2019-12-18

[5]
Mitochondrial protein transport: Versatility of translocases and mechanisms.

Mol Cell. 2023-3-16

[6]
Mitochondrial protein import clogging as a mechanism of disease.

Elife. 2023-5-2

[7]
Mitochondrial porin links protein biogenesis to metabolism.

Curr Genet. 2019-4-3

[8]
Mitochondrial Machineries for Protein Import and Assembly.

Annu Rev Biochem. 2017-3-15

[9]
Mitochondrial complexome and import network.

Trends Cell Biol. 2024-7

[10]
Mitochondrial preprotein translocases as dynamic molecular machines.

FEMS Yeast Res. 2006-9

引用本文的文献

[1]
Molecular mechanism of ultrafast transport by plasma membrane Ca-ATPases.

Nature. 2025-8-20

[2]
A protein-specific priority code in presequences determines the efficiency of mitochondrial protein import.

PLoS Biol. 2025-7-21

[3]
MitCOM-based prognostic model identifies GLUD1 as a key suppressor of glioblastoma growth and invasion through regulation of mitochondrial structure and metabolism.

Cancer Cell Int. 2025-6-21

[4]
Cutting-edge deep-learning based tools for metagenomic research.

Natl Sci Rev. 2025-2-19

[5]
Inhibition of mitochondrial protein import and proteostasis by a pro-apoptotic lipid.

Elife. 2025-5-30

[6]
The mitochondrial intermembrane space - a permanently proteostasis-challenged compartment.

Biol Chem. 2025-5-27

[7]
Chloroplast precursor protein preClpD overaccumulation triggers multilevel reprogramming of gene expression and a heat shock-like response.

Nat Commun. 2025-4-22

[8]
Endosomal chloride/proton exchangers need inhibitory TMEM9 β-subunits for regulation and prevention of disease-causing overactivity.

Nat Commun. 2025-4-1

[9]
Review: Utility of mass spectrometry in rare disease research and diagnosis.

NPJ Genom Med. 2025-3-31

[10]
Mitochondrial genetics, signalling and stress responses.

Nat Cell Biol. 2025-3

本文引用的文献

[1]
MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control.

Nat Cell Biol. 2021-12

[2]
Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context.

Cell Metab. 2021-12-7

[3]
Ablation of mitochondrial DNA results in widespread remodeling of the mitochondrial complexome.

EMBO J. 2021-11-2

[4]
Structural insight into the SAM-mediated assembly of the mitochondrial TOM core complex.

Science. 2021-9-17

[5]
Complexome Profiling: Assembly and Remodeling of Protein Complexes.

Int J Mol Sci. 2021-7-21

[6]
ComplexFinder: A software package for the analysis of native protein complex fractionation experiments.

Biochim Biophys Acta Bioenerg. 2021-8-1

[7]
CEDAR, an online resource for the reporting and exploration of complexome profiling data.

Biochim Biophys Acta Bioenerg. 2021-7-1

[8]
Structure of the dihydrolipoamide succinyltransferase (E2) component of the human alpha-ketoglutarate dehydrogenase complex (hKGDHc) revealed by cryo-EM and cross-linking mass spectrometry: Implications for the overall hKGDHc structure.

Biochim Biophys Acta Gen Subj. 2021-6

[9]
Mitochondrial sorting and assembly machinery operates by β-barrel switching.

Nature. 2021-2

[10]
MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations.

Nucleic Acids Res. 2021-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索