Suppr超能文献

婆罗洲猩猩长叫声中的声音复杂性。

Vocal complexity in the long calls of Bornean orangutans.

机构信息

K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, United States of America.

Department of Anthropology, Rutgers, The State University of New Jersey, New Brunswick, United States of America.

出版信息

PeerJ. 2024 May 14;12:e17320. doi: 10.7717/peerj.17320. eCollection 2024.

Abstract

Vocal complexity is central to many evolutionary hypotheses about animal communication. Yet, quantifying and comparing complexity remains a challenge, particularly when vocal types are highly graded. Male Bornean orangutans () produce complex and variable "long call" vocalizations comprising multiple sound types that vary within and among individuals. Previous studies described six distinct call (or pulse) types within these complex vocalizations, but none quantified their discreteness or the ability of human observers to reliably classify them. We studied the long calls of 13 individuals to: (1) evaluate and quantify the reliability of audio-visual classification by three well-trained observers, (2) distinguish among call types using supervised classification and unsupervised clustering, and (3) compare the performance of different feature sets. Using 46 acoustic features, we used machine learning (, support vector machines, affinity propagation, and fuzzy c-means) to identify call types and assess their discreteness. We additionally used Uniform Manifold Approximation and Projection (UMAP) to visualize the separation of pulses using both extracted features and spectrogram representations. Supervised approaches showed low inter-observer reliability and poor classification accuracy, indicating that pulse types were not discrete. We propose an updated pulse classification approach that is highly reproducible across observers and exhibits strong classification accuracy using support vector machines. Although the low number of call types suggests long calls are fairly simple, the continuous gradation of sounds seems to greatly boost the complexity of this system. This work responds to calls for more quantitative research to define call types and quantify gradedness in animal vocal systems and highlights the need for a more comprehensive framework for studying vocal complexity vis-à-vis graded repertoires.

摘要

声音复杂性是许多关于动物交流的进化假说的核心。然而,量化和比较复杂性仍然是一个挑战,特别是当声音类型高度分级时。雄性婆罗洲猩猩()会发出复杂且多变的“长叫声”,这些叫声由多种声音类型组成,在个体内部和个体之间都有所不同。先前的研究描述了这些复杂声音中的六种不同的叫声(或脉冲)类型,但都没有量化它们的离散程度或人类观察者可靠分类的能力。我们对 13 只个体的长叫声进行了研究:(1)评估和量化三位训练有素的观察者进行音频-视觉分类的可靠性,(2)使用监督分类和无监督聚类来区分叫声类型,(3)比较不同特征集的性能。我们使用 46 个声学特征,使用机器学习(,支持向量机、亲和传播和模糊 c 均值)来识别叫声类型并评估其离散性。我们还使用统一流形逼近和投影(UMAP)来可视化使用提取特征和频谱图表示的脉冲分离。监督方法显示出观察者之间的低可靠性和低分类准确性,表明脉冲类型不具有离散性。我们提出了一种更新的脉冲分类方法,该方法在观察者之间具有高度的可重复性,并且使用支持向量机表现出很强的分类准确性。尽管叫声类型数量较少表明长叫声相当简单,但声音的连续渐变似乎极大地增加了这个系统的复杂性。这项工作响应了更多定量研究的呼吁,以定义动物叫声系统中的叫声类型和量化渐变,并强调了需要一个更全面的框架来研究与渐变音域相关的声音复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验