Suppr超能文献

改进生物声学中小、不平衡、嘈杂但真实(SUNG)数据集的工作流程:以倭黑猩猩叫声为例。

Improving the workflow to crack Small, Unbalanced, Noisy, but Genuine (SUNG) datasets in bioacoustics: The case of bonobo calls.

机构信息

Département des arts, des lettres et du langage, Université du Québec à Chicoutimi, Chicoutimi, Canada.

Laboratoire Dynamique Du Langage, UMR 5596, Université de Lyon, CNRS, Lyon, France.

出版信息

PLoS Comput Biol. 2023 Apr 13;19(4):e1010325. doi: 10.1371/journal.pcbi.1010325. eCollection 2023 Apr.

Abstract

Despite the accumulation of data and studies, deciphering animal vocal communication remains challenging. In most cases, researchers must deal with the sparse recordings composing Small, Unbalanced, Noisy, but Genuine (SUNG) datasets. SUNG datasets are characterized by a limited number of recordings, most often noisy, and unbalanced in number between the individuals or categories of vocalizations. SUNG datasets therefore offer a valuable but inevitably distorted vision of communication systems. Adopting the best practices in their analysis is essential to effectively extract the available information and draw reliable conclusions. Here we show that the most recent advances in machine learning applied to a SUNG dataset succeed in unraveling the complex vocal repertoire of the bonobo, and we propose a workflow that can be effective with other animal species. We implement acoustic parameterization in three feature spaces and run a Supervised Uniform Manifold Approximation and Projection (S-UMAP) to evaluate how call types and individual signatures cluster in the bonobo acoustic space. We then implement three classification algorithms (Support Vector Machine, xgboost, neural networks) and their combination to explore the structure and variability of bonobo calls, as well as the robustness of the individual signature they encode. We underscore how classification performance is affected by the feature set and identify the most informative features. In addition, we highlight the need to address data leakage in the evaluation of classification performance to avoid misleading interpretations. Our results lead to identifying several practical approaches that are generalizable to any other animal communication system. To improve the reliability and replicability of vocal communication studies with SUNG datasets, we thus recommend: i) comparing several acoustic parameterizations; ii) visualizing the dataset with supervised UMAP to examine the species acoustic space; iii) adopting Support Vector Machines as the baseline classification approach; iv) explicitly evaluating data leakage and possibly implementing a mitigation strategy.

摘要

尽管积累了大量的数据和研究成果,但破解动物的声音交流仍然具有挑战性。在大多数情况下,研究人员必须处理由少量录音组成的 Small, Unbalanced, Noisy, but genuine (SUNG) 数据集。SUNG 数据集的特点是记录数量有限,通常噪音较大,并且个体或发声类别的数量不平衡。因此,SUNG 数据集提供了一种有价值但不可避免地扭曲了的交流系统视角。在分析中采用最佳实践是从可用信息中有效提取并得出可靠结论的关键。在这里,我们展示了应用于 SUNG 数据集的最新机器学习进展如何成功揭示了倭黑猩猩复杂的发声 repertoire,并提出了一种可用于其他动物物种的工作流程。我们在三个特征空间中进行声学参数化,并运行 Supervised Uniform Manifold Approximation and Projection (S-UMAP),以评估呼叫类型和个体签名在倭黑猩猩声学空间中的聚类方式。然后,我们实施了三种分类算法(支持向量机、xgboost、神经网络)及其组合,以探索倭黑猩猩叫声的结构和可变性,以及它们所编码的个体签名的稳健性。我们强调了分类性能如何受到特征集的影响,并确定了最具信息量的特征。此外,我们强调了在评估分类性能时需要解决数据泄露问题,以避免产生误导性的解释。我们的结果导致确定了几种适用于任何其他动物通讯系统的实用方法。为了提高使用 SUNG 数据集进行声音通讯研究的可靠性和可重复性,我们建议:i)比较几种声学参数化;ii)使用有监督的 UMAP 可视化数据集,以检查物种声学空间;iii)采用支持向量机作为基线分类方法;iv)明确评估数据泄露,并可能实施缓解策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efbf/10129004/e71118786f26/pcbi.1010325.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验