Tsai Hung-Wen, Chiou Chien-Yu, Yang Wei-Jong, Hsieh Tsan-An, Chen Cheng-Yi, Hsu Che-Wei, Lin Yih-Jyh, Hsieh Min-En, Yeh Matthew M, Chen Chin-Chun, Shen Meng-Ru, Chung Pau-Choo
Department of Pathology, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung University Tainan 701 Taiwan.
Department of Electrical EngineeringNational Cheng Kung University Tainan 701 Taiwan.
IEEE Open J Eng Med Biol. 2024 Mar 20;5:261-270. doi: 10.1109/OJEMB.2024.3379479. eCollection 2024.
: The early diagnosis and treatment of hepatitis is essential to reduce hepatitis-related liver function deterioration and mortality. One component of the widely-used Ishak grading system for the grading of periportal interface hepatitis is based on the percentage of portal borders infiltrated by lymphocytes. Thus, the accurate detection of lymphocyte-infiltrated periportal regions is critical in the diagnosis of hepatitis. However, the infiltrating lymphocytes usually result in the formation of ambiguous and highly-irregular portal boundaries, and thus identifying the infiltrated portal boundary regions precisely using automated methods is challenging. This study aims to develop a deep-learning-based automatic detection framework to assist diagnosis. : The present study proposes a framework consisting of a Structurally-REfined Deep Portal Segmentation module and an Infiltrated Periportal Region Detection module based on heterogeneous infiltration features to accurately identify the infiltrated periportal regions in liver Whole Slide Images. : The proposed method achieves 0.725 in F1-score of lymphocyte-infiltrated periportal region detection. Moreover, the statistics of the ratio of the detected infiltrated portal boundary have high correlation to the Ishak grade (Spearman's correlations more than 0.87 with p-values less than 0.001) and medium correlation to the liver function index aspartate aminotransferase and alanine aminotransferase (Spearman's correlations more than 0.63 and 0.57 with p-values less than 0.001). : The study shows the statistics of the ratio of infiltrated portal boundary have correlation to the Ishak grade and liver function index. The proposed framework provides pathologists with a useful and reliable tool for hepatitis diagnosis.
肝炎的早期诊断和治疗对于减少肝炎相关的肝功能恶化和死亡率至关重要。广泛使用的用于门周界面性肝炎分级的Ishak分级系统的一个组成部分是基于淋巴细胞浸润的门脉边界百分比。因此,准确检测淋巴细胞浸润的门周区域对于肝炎的诊断至关重要。然而,浸润的淋巴细胞通常会导致门脉边界模糊且高度不规则,因此使用自动化方法精确识别浸润的门脉边界区域具有挑战性。本研究旨在开发一种基于深度学习的自动检测框架以辅助诊断。本研究提出了一个框架,该框架由一个结构细化的深度门脉分割模块和一个基于异质性浸润特征的浸润门周区域检测模块组成,以准确识别肝脏全切片图像中浸润的门周区域。所提出的方法在淋巴细胞浸润的门周区域检测的F1分数上达到了0.725。此外,检测到的浸润门脉边界比例的统计数据与Ishak分级具有高度相关性(Spearman相关性大于0.87,p值小于0.001),与肝功能指标天冬氨酸转氨酶和丙氨酸转氨酶具有中度相关性(Spearman相关性大于0.63和0.57,p值小于0.001)。该研究表明浸润门脉边界比例的统计数据与Ishak分级和肝功能指标相关。所提出的框架为病理学家提供了一个用于肝炎诊断的有用且可靠的工具。