Suppr超能文献

来自真实世界数据提取平台的乳腺癌数据的验证及临床发现论证

Validation and clinical discovery demonstration of breast cancer data from a real-world data extraction platform.

作者信息

Nottke Amanda, Alan Sophia, Brimble Elise, Cardillo Anthony B, Henderson Lura, Littleford Hana E, Rojahn Susan, Sage Heather, Taylor Jessica, West-Odell Lisandra, Berk Alexandra

机构信息

Ciitizen, San Francisco, CA 94112, United States.

Invitae, San Francisco, CA 94103, United States.

出版信息

JAMIA Open. 2024 May 17;7(2):ooae041. doi: 10.1093/jamiaopen/ooae041. eCollection 2024 Jul.

Abstract

OBJECTIVE

To validate and demonstrate the clinical discovery utility of a novel patient-mediated, medical record collection and data extraction platform developed to improve access and utilization of real-world clinical data.

MATERIALS AND METHODS

Clinical variables were extracted from the medical records of 1011 consented patients with breast cancer. To validate the extracted data, case report forms completed using the structured data output of the platform were compared to manual chart review for 50 randomly-selected patients with metastatic breast cancer. To demonstrate the platform's clinical discovery utility, we identified 194 patients with early-stage clinical data who went on to develop distant metastases and utilized the platform-extracted data to assess associations between time to distant metastasis (TDM) and early-stage tumor histology, molecular type, and germline status.

RESULTS

The platform-extracted data for the validation cohort had 97.6% precision (91.98%-100% by variable type) and 81.48% recall (58.15%-95.00% by variable type) compared to manual chart review. In our discovery cohort, the shortest TDM was significantly associated with metaplastic (739.0 days) and inflammatory histologies (1005.8 days), HR-/HER2- molecular types (1187.4 days), and positive status (1042.5 days) as compared to other histologies, molecular types, and negative status, respectively. Multivariable analyses did not produce statistically significant results.

DISCUSSION

The precision and recall of platform-extracted clinical data are reported, although specificity could not be assessed. The data can generate clinically-relevant insights.

CONCLUSION

The structured real-world data produced by a novel patient-mediated, medical record-extraction platform are reliable and can power clinical discovery.

摘要

目的

验证并展示一个新开发的患者介导的病历收集和数据提取平台的临床发现效用,该平台旨在改善真实世界临床数据的获取和利用。

材料与方法

从1011名同意参与的乳腺癌患者的病历中提取临床变量。为验证提取的数据,将使用该平台结构化数据输出完成的病例报告表与50名随机选择的转移性乳腺癌患者的手工病历审查结果进行比较。为展示该平台的临床发现效用,我们识别出194例具有早期临床数据且随后发生远处转移的患者,并利用该平台提取的数据评估远处转移时间(TDM)与早期肿瘤组织学、分子类型和种系状态之间的关联。

结果

与手工病历审查相比,验证队列中平台提取的数据精度为97.6%(按变量类型为91.98%-100%),召回率为81.48%(按变量类型为58.15%-95.00%)。在我们的发现队列中,与其他组织学、分子类型和阴性状态相比,最短的TDM分别与化生组织学(739.0天)和炎症组织学(1005.8天)、HR-/HER2-分子类型(1187.4天)以及阳性状态(1042.5天)显著相关。多变量分析未产生具有统计学意义的结果。

讨论

报告了平台提取的临床数据的精度和召回率,尽管无法评估特异性。这些数据可以产生与临床相关的见解。

结论

一个新的患者介导的病历提取平台产生的结构化真实世界数据是可靠的,可为临床发现提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d336/11100995/340b6b41f6bc/ooae041f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验