Department of Radiology, Hanoi Medical University, Ha Noi, Vietnam.
Department of Radiology, Ha Dong General Hospital, Ha Noi, Vietnam.
Clin Ter. 2024 May-Jun;175(3):128-136. doi: 10.7417/CT.2024.5053.
We assessed the value of histogram analysis (HA) of apparent diffusion coefficient (ADC) maps for grading low-grade (LGG) and high-grade (HGG) gliomas.
We compared the diagnostic performance of two region-of-interest (ROI) placement methods (ROI 1: the entire tumor; ROI 2: the tumor excluding cystic and necrotic portions). We retrospectively evaluated 54 patients with supratentorial gliomas (18 LGG and 36 HGG). All subjects underwent standard 3T contrast-enhanced magnetic resonance imaging. Histogram parameters of ADC maps calculated with the two segmentation methods comprised mean, median, maxi-mum, minimum, kurtosis, skewness, entropy, standard deviation (sd), mean of positive pixels (mpp), uniformity of positive pixels, and their ratios (r) between lesion and normal white matter. They were compared using the independent t-test, chi-square test, or Mann-Whitney U test. For statistically significant results, receiver operating characteristic curves were constructed, and the optimal cutoff value, sensitivity, and specificity were determined by maximizing Youden's index.
The ROI 1 method resulted in significantly higher rADC mean, rADC median, and rADC mpp for LGG than for HGG; these parameters had value for predicting the histological glioma grade with a cutoff (sensitivity, specificity) of 1.88 (77.8%, 61.1%), 2.25 (44.4%, 97.2%), and 1.88 (77.8%, 63.9%), respectively. The ROI 2 method resulted in significantly higher ADC mean, ADC median, ADC mpp, ADC sd, ADC max, rADC median, rADC mpp, rADC mean, rADC sd, and rADC max for LGG than for HGG, while skewness was lower for LGG than for HGG (0.27 [0.98] vs 0.91 [0.81], p = 0.014). In ROI 2, ADC median, ADC mpp, ADC mean, rADC median, rADC mpp, and rADC mean performed well in differentiating glioma grade with cutoffs (sensitivity, specificity) of 1.28 (77.8%, 88.9%), 1.28 (77.8%, 88.9%), 1.25 (77.8%, 91.7%), 1.81 (83.3%, 91.7%), 1.74 (83.3%, 91.7%), and 1.81 (83.3%, 91.7%), respectively.
HA parameters had value for grading gliomas. Ex-cluding cystic and necrotic portions of the tumor for measuring HA parameters was preferable to using the entire tumor as the ROI. In this segmentation, rADC median showed the highest performance in predicting histological glioma grade, followed by rADC mpp, rADC mean, ADC median, ADC mpp, and ADC mean.
我们评估表观扩散系数(ADC)图直方图分析(HA)在低级别(LGG)和高级别(HGG)胶质瘤分级中的价值。
我们比较了两种感兴趣区(ROI)放置方法(ROI1:整个肿瘤;ROI2:肿瘤不包括囊变和坏死部分)的诊断性能。我们回顾性评估了 54 例幕上胶质瘤患者(18 例 LGG 和 36 例 HGG)。所有患者均接受标准 3T 增强磁共振成像检查。使用两种分割方法计算 ADC 图直方图参数包括均值、中位数、最大值、最小值、峰度、偏度、熵、标准差(sd)、阳性像素的均值(mpp)、阳性像素的均匀性以及病变与正常白质之间的比值(r)。使用独立 t 检验、卡方检验或曼-惠特尼 U 检验进行比较。对于具有统计学意义的结果,构建受试者工作特征曲线,并通过最大化约登指数确定最佳截断值、敏感性和特异性。
ROI1 方法用于预测 LGG 的 rADC 均值、rADC 中位数和 rADC mpp 显著高于 HGG;这些参数对于预测组织学胶质瘤分级具有价值,截断值(敏感性,特异性)为 1.88(77.8%,61.1%)、2.25(44.4%,97.2%)和 1.88(77.8%,63.9%)。ROI2 方法用于预测 LGG 的 ADC 均值、ADC 中位数、ADC mpp、ADC sd、ADC max、rADC 中位数、rADC mpp、rADC 均值、rADC sd 和 rADC max 显著高于 HGG,而 LGG 的偏度低于 HGG(0.27[0.98]与 0.91[0.81],p=0.014)。在 ROI2 中,ADC 中位数、ADC mpp、ADC 均值、rADC 中位数、rADC mpp 和 rADC 均值在区分胶质瘤分级方面表现良好,截断值(敏感性,特异性)为 1.28(77.8%,88.9%)、1.28(77.8%,88.9%)、1.25(77.8%,91.7%)、1.81(83.3%,91.7%)、1.74(83.3%,91.7%)和 1.81(83.3%,91.7%)。
HA 参数对胶质瘤分级有价值。在测量 HA 参数时,不包括肿瘤的囊变和坏死部分优于使用整个肿瘤作为 ROI。在这种分割中,rADC 中位数在预测组织学胶质瘤分级方面表现最好,其次是 rADC mpp、rADC 均值、ADC 中位数、ADC mpp 和 ADC 均值。