Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
Chaos. 2024 May 1;34(5). doi: 10.1063/5.0202743.
Transient or partial synchronization can be used to do computations, although a fully synchronized network is sometimes related to the onset of epileptic seizures. Here, we propose a homeostatic mechanism that is capable of maintaining a neuronal network at the edge of a synchronization transition, thereby avoiding the harmful consequences of a fully synchronized network. We model neurons by maps since they are dynamically richer than integrate-and-fire models and more computationally efficient than conductance-based approaches. We first describe the synchronization phase transition of a dense network of neurons with different tonic spiking frequencies coupled by gap junctions. We show that at the transition critical point, inputs optimally reverberate through the network activity through transient synchronization. Then, we introduce a local homeostatic dynamic in the synaptic coupling and show that it produces a robust self-organization toward the edge of this phase transition. We discuss the potential biological consequences of this self-organization process, such as its relation to the Brain Criticality hypothesis, its input processing capacity, and how its malfunction could lead to pathological synchronization and the onset of seizure-like activity.
暂态或部分同步可用作计算,尽管完全同步的网络有时与癫痫发作的发作有关。在这里,我们提出了一种能够维持处于同步转换边缘的神经元网络的动态平衡机制,从而避免完全同步网络的有害后果。我们通过映射来模拟神经元,因为它们比积分和放电模型更具动态性,并且比基于电导率的方法更具计算效率。我们首先描述了具有不同紧张性脉冲频率的神经元密集网络通过间隙连接耦合的同步相变。我们表明,在相变临界点,输入通过暂态同步通过网络活动最佳地回荡。然后,我们在突触耦合中引入了局部动态平衡,并表明它朝着相变边缘产生了稳健的自组织。我们讨论了这种自组织过程的潜在生物学后果,例如它与大脑临界性假说的关系、它的输入处理能力,以及其功能障碍如何导致病理性同步和癫痫样活动的发作。