Department of Electromagnetism and Physics of the Matter & Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada, Spain.
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay.
PLoS Comput Biol. 2024 Sep 5;20(9):e1012369. doi: 10.1371/journal.pcbi.1012369. eCollection 2024 Sep.
The relation between electroencephalography (EEG) rhythms, brain functions, and behavioral correlates is well-established. Some physiological mechanisms underlying rhythm generation are understood, enabling the replication of brain rhythms in silico. This offers a pathway to explore connections between neural oscillations and specific neuronal circuits, potentially yielding fundamental insights into the functional properties of brain waves. Information theory frameworks, such as Integrated Information Decomposition (Φ-ID), relate dynamical regimes with informational properties, providing deeper insights into neuronal dynamic functions. Here, we investigate wave emergence in an excitatory/inhibitory (E/I) balanced network of integrate and fire neurons with short-term synaptic plasticity. This model produces a diverse range of EEG-like rhythms, from low δ waves to high-frequency oscillations. Through Φ-ID, we analyze the network's information dynamics and its relation with different emergent rhythms, elucidating the system's suitability for functions such as robust information transfer, storage, and parallel operation. Furthermore, our study helps to identify regimes that may resemble pathological states due to poor informational properties and high randomness. We found, e.g., that in silico β and δ waves are associated with maximum information transfer in inhibitory and excitatory neuron populations, respectively, and that the coexistence of excitatory θ, α, and β waves is associated to information storage. Additionally, we observed that high-frequency oscillations can exhibit either high or poor informational properties, potentially shedding light on ongoing discussions regarding physiological versus pathological high-frequency oscillations. In summary, our study demonstrates that dynamical regimes with similar oscillations may exhibit vastly different information dynamics. Characterizing information dynamics within these regimes serves as a potent tool for gaining insights into the functions of complex neuronal networks. Finally, our findings suggest that the use of information dynamics in both model and experimental data analysis, could help discriminate between oscillations associated with cognitive functions and those linked to neuronal disorders.
脑电图 (EEG) 节律、脑功能和行为相关性之间的关系已经得到充分证实。一些产生节律的生理机制已经被理解,这使得在计算机中复制脑节律成为可能。这为探索神经振荡与特定神经元回路之间的联系提供了途径,有可能为脑电波的功能特性提供基本的见解。信息理论框架,如综合信息分解 (Φ-ID),将动态状态与信息特性联系起来,为神经元动态功能提供了更深入的见解。在这里,我们研究了具有短期突触可塑性的积分和点火神经元兴奋/抑制 (E/I) 平衡网络中的波的涌现。该模型产生了一系列多样化的 EEG 样节律,从低 δ 波到高频振荡。通过 Φ-ID,我们分析了网络的信息动力学及其与不同涌现节律的关系,阐明了系统在稳健信息传输、存储和并行操作等功能中的适用性。此外,我们的研究有助于识别由于信息特性差和随机性高而可能类似于病理状态的状态。例如,我们发现,在计算机中,β 波和 δ 波分别与抑制性和兴奋性神经元群体中的最大信息传输相关,而兴奋性 θ、α 和 β 波的共存与信息存储相关。此外,我们观察到高频振荡可能表现出高或低的信息特性,这可能为正在进行的关于生理与病理性高频振荡的讨论提供了一些启示。总之,我们的研究表明,具有相似振荡的动态状态可能表现出截然不同的信息动力学。在这些状态中描述信息动力学是深入了解复杂神经网络功能的有力工具。最后,我们的发现表明,在模型和实验数据分析中使用信息动力学,可以帮助区分与认知功能相关的振荡和与神经元疾病相关的振荡。