Suppr超能文献

通过生物信息学和基于机器学习的方法鉴定与离子通道相关的基因作为骨关节炎的诊断标志物和潜在治疗靶点。

Identification of ion channel-related genes as diagnostic markers and potential therapeutic targets for osteoarthritis through bioinformatics and machine learning-based approaches.

机构信息

Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.

出版信息

Biomarkers. 2024 Jul;29(5):285-297. doi: 10.1080/1354750X.2024.2358316. Epub 2024 Jun 3.

Abstract

BACKGROUND

Osteoarthritis (OA) is a debilitating joint disorder characterized by the progressive degeneration of articular cartilage. Although the role of ion channels in OA pathogenesis is increasingly recognized, diagnostic markers and targeted therapies remain limited.

METHODS

In this study, we analyzed the GSE48556 dataset to identify differentially expressed ion channel-related genes (DEGs) in OA and normal controls. We employed machine learning algorithms, least absolute shrinkage and selection operator(LASSO), and support vector machine recursive feature elimination(SVM-RFE) to select potential diagnostic markers. Then the gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed to explore the potential diagnostic markers' involvement in biological pathways. Finally, weighted gene co-expression network analysis (WGCNA) was used to identify key genes associated with OA.

RESULTS

We identified a total of 47 DEGs, with the majority involved in transient receptor potential (TRP) pathways. Seven genes (CHRNA4, GABRE, HTR3B, KCNG2, KCNJ2, LRRC8C, and TRPM5) were identified as the best characteristic genes for distinguishing OA from healthy samples. We performed clustering analysis and identified two distinct subtypes of OA, C1, and C2, with differential gene expression and immune cell infiltration profiles. Then we identified three key genes (PPP1R3D, ZNF101, and LOC651309) associated with OA. We constructed a prediction model using these genes and validated it using the GSE46750 dataset, demonstrating reasonable accuracy and specificity.

CONCLUSIONS

Our findings provide novel insights into the role of ion channel-related genes in OA pathogenesis and offer potential diagnostic markers and therapeutic targets for the treatment of OA.

摘要

背景

骨关节炎(OA)是一种使人衰弱的关节疾病,其特征是关节软骨的进行性退化。尽管离子通道在 OA 发病机制中的作用日益受到重视,但诊断标志物和靶向治疗仍然有限。

方法

在这项研究中,我们分析了 GSE48556 数据集,以鉴定 OA 和正常对照之间差异表达的离子通道相关基因(DEGs)。我们采用机器学习算法,最小绝对收缩和选择算子(LASSO)和支持向量机递归特征消除(SVM-RFE)来选择潜在的诊断标志物。然后进行基因集富集分析(GSEA)和基因集变异分析(GSVA),以探讨潜在诊断标志物在生物学途径中的参与。最后,使用加权基因共表达网络分析(WGCNA)来鉴定与 OA 相关的关键基因。

结果

我们共鉴定出 47 个 DEGs,其中大多数与瞬时受体电位(TRP)途径有关。7 个基因(CHRNA4、GABRE、HTR3B、KCNG2、KCNJ2、LRRC8C 和 TRPM5)被鉴定为区分 OA 与健康样本的最佳特征基因。我们进行了聚类分析,并鉴定出两种不同的 OA 亚型,C1 和 C2,具有不同的基因表达和免疫细胞浸润谱。然后我们鉴定出与 OA 相关的三个关键基因(PPP1R3D、ZNF101 和 LOC651309)。我们使用这些基因构建了一个预测模型,并使用 GSE46750 数据集进行了验证,证明了其具有合理的准确性和特异性。

结论

我们的研究结果为离子通道相关基因在 OA 发病机制中的作用提供了新的见解,并为 OA 的治疗提供了潜在的诊断标志物和治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验