Suppr超能文献

2 型糖尿病伴认知障碍和衰老的有效生物标志物和免疫浸润的生物信息学分析。

Bioinformatics analysis of effective biomarkers and immune infiltration in type 2 diabetes with cognitive impairment and aging.

机构信息

Department of Geriatric integrative, Second Affiliated Hospital of Xinjiang Medical University, NO.38, South Lake East Road North Second Lane, Shuimogou District, Urumqi, 830063, Xinjiang, China.

出版信息

Sci Rep. 2024 Oct 7;14(1):23279. doi: 10.1038/s41598-024-74480-8.

Abstract

With the increasing prevalence of diabetes mellitus worldwide, type 2 diabetes mellitus (T2D) combined with cognitive impairment and aging has become one of the common and important complications of diabetes mellitus, which seriously affects the quality of life of the patients, and imposes a heavy burden on the patients' families and the society. Currently, there are no special measures for the treatment of cognitive impairment and aging in type 2 diabetes mellitus. Therefore, the search for potential biological markers of type 2 diabetes mellitus combined with cognitive impairment and aging is of great significance for future precisive treatment. We downloaded three gene expression datasets from the GEO database: GSE161355 (related to T2D with cognitive impairment and aging), GSE122063, and GSE5281 (related to Alzheimer's disease). Differentially expressed genes (DEGs) were identified, followed by gene set enrichment analysis (GSEA). A protein-protein interaction (PPI) network was constructed using the STRING database, and the top 15 hub genes were identified using the CytoHubba plugin in Cytoscape. Core genes were ultimately determined using three machine learning methods: LASSO regression, Support Vector Machine Recursive Feature Elimination (SVM-RFE), and Linear Discriminant Analysis (LDA). The diagnostic performance of these genes was assessed using ROC curve analysis and validated in an independent dataset (GSE5281). Regulatory genes related to ferroptosis were screened from the FerrDb database, and their biological functions were further explored through GO and KEGG enrichment analyses. Finally, the CIBERSORT algorithm was used to analyze immune cell infiltration, and the correlation between core genes and immune cell infiltration levels was calculated, leading to the construction of an mRNA-miRNA regulatory network. In the GSE161355 and GSE122063 datasets, 217 common DEGs were identified. GSEA analysis revealed their enrichment in the PI3K-PLC-TRK signaling pathway, TP53 regulation of metabolic genes pathway, Notch signaling pathway, among others. PPI network analysis identified 15 candidate core genes, and further selection using LASSO, LDA, and SVM-RFE machine learning algorithms resulted in 6 core genes: BCL6, TP53, HSP90AA1, CRYAB, IL1B, and DNAJB1. ROC curve analysis indicated that these genes had good diagnostic performance in the GSE161355 dataset, with TP53 and IL1B achieving an AUC of 0.9, indicating the highest predictive accuracy. BCL6, HSP90AA1, CRYAB, and DNAJB1 also had AUCs greater than 0.8, demonstrating moderate predictive accuracy. Validation in the independent dataset GSE5281 showed that these core genes also had good diagnostic performance in Alzheimer's disease samples (AUC > 0.6). Ferroptosis-related analysis revealed that IL1B and TP53 play significant roles in apoptosis and immune response. Immune cell infiltration analysis showed that IL1B is significantly positively correlated with infiltration levels of monocytes and NK cells, while TP53 is significantly negatively correlated with infiltration levels of follicular helper T cells. The construction of the miRNA-mRNA regulatory network suggested that miR-150a-5p might play a key role in the regulation of T2D-associated cognitive impairment and aging by TP53. This study, by integrating bioinformatics and machine learning methods, identified BCL6, TP53, HSP90AA1, CRYAB, IL1B, and DNAJB1 as potential diagnostic biomarkers for T2D with cognitive impairment and aging, with a particular emphasis on the significance of TP53 and IL1B in immune cell infiltration. These findings not only enhance our understanding of the molecular mechanisms linking type 2 diabetes to cognitive impairment and aging, providing new targets for early diagnosis and treatment, but also offer new directions and targets for basic research.

摘要

随着全球糖尿病发病率的不断上升,2 型糖尿病(T2DM)合并认知障碍和衰老已成为糖尿病常见且重要的并发症之一,严重影响患者的生活质量,给患者家庭和社会带来沉重负担。目前,针对 2 型糖尿病合并认知障碍和衰老尚无特殊治疗措施。因此,寻找潜在的 2 型糖尿病合并认知障碍和衰老的生物标志物,对于未来的精准治疗具有重要意义。我们从 GEO 数据库中下载了三个基因表达数据集:GSE161355(与伴有认知障碍和衰老的 2 型糖尿病相关)、GSE122063 和 GSE5281(与阿尔茨海默病相关)。鉴定差异表达基因(DEGs),然后进行基因集富集分析(GSEA)。使用 STRING 数据库构建蛋白质-蛋白质相互作用(PPI)网络,使用 Cytoscape 中的 CytoHubba 插件识别前 15 个枢纽基因。最后使用三种机器学习方法(LASSO 回归、支持向量机递归特征消除(SVM-RFE)和线性判别分析(LDA))确定核心基因。使用 ROC 曲线分析评估这些基因的诊断性能,并在独立数据集(GSE5281)中进行验证。从 FerrDb 数据库筛选与铁死亡相关的调节基因,并通过 GO 和 KEGG 富集分析进一步探讨其生物学功能。最后,使用 CIBERSORT 算法分析免疫细胞浸润,并计算核心基因与免疫细胞浸润水平的相关性,构建 mRNA-miRNA 调控网络。在 GSE161355 和 GSE122063 数据集中共鉴定出 217 个共同的 DEGs。GSEA 分析显示它们在 PI3K-PLC-TRK 信号通路、TP53 调节代谢基因通路、Notch 信号通路等方面富集。PPI 网络分析确定了 15 个候选核心基因,进一步使用 LASSO、LDA 和 SVM-RFE 机器学习算法选择,得到 6 个核心基因:BCL6、TP53、HSP90AA1、CRYAB、IL1B 和 DNAJB1。ROC 曲线分析表明,这些基因在 GSE161355 数据集中具有良好的诊断性能,TP53 和 IL1B 的 AUC 达到 0.9,表明预测准确性最高。BCL6、HSP90AA1、CRYAB 和 DNAJB1 的 AUC 也大于 0.8,表明具有中等预测准确性。在独立数据集 GSE5281 中的验证表明,这些核心基因在阿尔茨海默病样本中也具有良好的诊断性能(AUC>0.6)。铁死亡相关分析表明,IL1B 和 TP53 在细胞凋亡和免疫反应中发挥重要作用。免疫细胞浸润分析表明,IL1B 与单核细胞和 NK 细胞的浸润水平显著正相关,而 TP53 与滤泡辅助 T 细胞的浸润水平显著负相关。miRNA-mRNA 调控网络的构建表明,miR-150a-5p 可能通过 TP53 对 T2D 相关认知障碍和衰老的调节中发挥关键作用。本研究通过整合生物信息学和机器学习方法,鉴定出 BCL6、TP53、HSP90AA1、CRYAB、IL1B 和 DNAJB1 作为 2 型糖尿病伴认知障碍和衰老的潜在诊断生物标志物,特别强调了 TP53 和 IL1B 在免疫细胞浸润中的重要性。这些发现不仅加深了我们对 2 型糖尿病与认知障碍和衰老相关的分子机制的理解,为早期诊断和治疗提供了新的靶点,也为基础研究提供了新的方向和靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1125/11488262/b38284f1eb75/41598_2024_74480_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验