Suppr超能文献

基于群体的多任务协作超参数调优

Population-Based Hyperparameter Tuning With Multitask Collaboration.

作者信息

Li Wendi, Wang Ting, Ng Wing W Y

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Sep;34(9):5719-5731. doi: 10.1109/TNNLS.2021.3130896. Epub 2023 Sep 1.

Abstract

Population-based optimization methods are widely used for hyperparameter (HP) tuning for a given specific task. In this work, we propose the population-based hyperparameter tuning with multitask collaboration (PHTMC), which is a general multitask collaborative framework with parallel and sequential phases for population-based HP tuning methods. In the parallel HP tuning phase, a shared population for all tasks is kept and the intertask relatedness is considered to both yield a better generalization ability and avoid data bias to a single task. In the sequential HP tuning phase, a surrogate model is built for each new-added task so that the metainformation from the existing tasks can be extracted and used to help the initialization for the new task. Experimental results show significant improvements in generalization abilities yielded by neural networks trained using the PHTMC and better performances achieved by multitask metalearning. Moreover, a visualization of the solution distribution and the autoencoder's reconstruction of both the PHTMC and a single-task population-based HP tuning method is compared to analyze the property with the multitask collaboration.

摘要

基于群体的优化方法被广泛用于针对给定特定任务的超参数(HP)调优。在这项工作中,我们提出了基于群体的多任务协作超参数调优(PHTMC),它是一个通用的多任务协作框架,具有用于基于群体的HP调优方法的并行和顺序阶段。在并行HP调优阶段,保留所有任务的共享群体,并考虑任务间的相关性,以产生更好的泛化能力并避免数据偏向单个任务。在顺序HP调优阶段,为每个新添加的任务构建一个替代模型,以便可以提取现有任务的元信息并用于帮助新任务的初始化。实验结果表明,使用PHTMC训练的神经网络在泛化能力上有显著提高,并且多任务元学习取得了更好的性能。此外,比较了PHTMC和基于单任务群体的HP调优方法的解分布可视化以及自动编码器的重构,以分析多任务协作的特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验