Suppr超能文献

葡萄糖对胰岛β细胞 KATP 通道的调节:是时候建立新模型了!

Glucose Regulation of β-Cell KATP Channels: It Is Time for a New Model!

机构信息

Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison.

William S. Middleton Memorial Veterans Hospital, Madison, WI.

出版信息

Diabetes. 2024 Jun 1;73(6):856-863. doi: 10.2337/dbi23-0032.

Abstract

An agreed-upon consensus model of glucose-stimulated insulin secretion from healthy β-cells is essential for understanding diabetes pathophysiology. Since the discovery of the KATP channel in 1984, an oxidative phosphorylation (OxPhos)-driven rise in ATP has been assumed to close KATP channels to initiate insulin secretion. This model lacks any evidence, genetic or otherwise, that mitochondria possess the bioenergetics to raise the ATP/ADP ratio to the triggering threshold, and conflicts with genetic evidence demonstrating that OxPhos is dispensable for insulin secretion. It also conflates the stoichiometric yield of OxPhos with thermodynamics, and overestimates OxPhos by failing to account for established features of β-cell metabolism, such as leak, anaplerosis, cataplerosis, and NADPH production that subtract from the efficiency of mitochondrial ATP production. We have proposed an alternative model, based on the spatial and bioenergetic specializations of β-cell metabolism, in which glycolysis initiates insulin secretion. The evidence for this model includes that 1) glycolysis has high control strength over insulin secretion; 2) glycolysis is active at the correct time to explain KATP channel closure; 3) plasma membrane-associated glycolytic enzymes control KATP channels; 4) pyruvate kinase has favorable bioenergetics, relative to OxPhos, for raising ATP/ADP; and 5) OxPhos stalls before membrane depolarization and increases after. Although several key experiments remain to evaluate this model, the 1984 model is based purely on circumstantial evidence and must be rescued by causal, mechanistic experiments if it is to endure.

摘要

健康β细胞葡萄糖刺激胰岛素分泌的共识模型对于理解糖尿病发病机制至关重要。自 1984 年发现 KATP 通道以来,人们一直认为氧化磷酸化 (OxPhos) 驱动的 ATP 升高会关闭 KATP 通道以启动胰岛素分泌。该模型缺乏任何证据,无论是遗传证据还是其他证据,表明线粒体具有提高 ATP/ADP 比率达到触发阈值的生物能量,并且与遗传证据相冲突,这些证据表明 OxPhos 对于胰岛素分泌不是必需的。它还将 OxPhos 的计量产率与热力学混淆,并因未能考虑到β细胞代谢的既定特征(如漏、氨甲酰磷酸合成、脱羧和 NADPH 产生)而高估了 OxPhos,这些特征会降低线粒体 ATP 产生的效率。我们提出了一个基于β细胞代谢的空间和生物能量专门化的替代模型,其中糖酵解启动胰岛素分泌。该模型的证据包括:1)糖酵解对胰岛素分泌具有高控制强度;2)糖酵解在正确的时间活跃以解释 KATP 通道关闭;3)质膜相关糖酵解酶控制 KATP 通道;4)与 OxPhos 相比,丙酮酸激酶具有有利于提高 ATP/ADP 的生物能量;5)OxPhos 在膜去极化之前停滞,并在之后增加。尽管仍有几个关键实验需要评估该模型,但 1984 年的模型纯粹基于间接证据,如果要使其持续存在,就必须通过因果关系和机制实验来挽救。

相似文献

1
Glucose Regulation of β-Cell KATP Channels: It Is Time for a New Model!
Diabetes. 2024 Jun 1;73(6):856-863. doi: 10.2337/dbi23-0032.
3
Glucose Regulation of β-Cell KATP Channels: Is a New Model Needed?
Diabetes. 2024 Jun 1;73(6):849-855. doi: 10.2337/dbi23-0031.
4
K channel activity and slow oscillations in pancreatic beta cells are regulated by mitochondrial ATP production.
J Physiol. 2023 Dec;601(24):5655-5667. doi: 10.1113/JP284982. Epub 2023 Nov 20.
6
AKAP79/150 coordinates leptin-induced PKA signaling to regulate K channel trafficking in pancreatic β-cells.
J Biol Chem. 2021 Jan-Jun;296:100442. doi: 10.1016/j.jbc.2021.100442. Epub 2021 Feb 19.

引用本文的文献

3
Targeting ion channel networks in diabetic kidney disease: from molecular crosstalk to precision therapeutics and clinical innovation.
Front Med (Lausanne). 2025 Jun 26;12:1607701. doi: 10.3389/fmed.2025.1607701. eCollection 2025.
6
Diuretics: a review of the pharmacology and effects on glucose homeostasis.
Front Pharmacol. 2025 Mar 28;16:1513125. doi: 10.3389/fphar.2025.1513125. eCollection 2025.
7
Pyruvate kinase modulates the link between β-cell fructose metabolism and insulin secretion.
FASEB J. 2025 Apr 15;39(7):e70500. doi: 10.1096/fj.202401912RR.
8
The effects of free fatty acid-free bovine serum albumin and palmitate on pancreatic β-cell function.
Islets. 2025 Dec;17(1):2479911. doi: 10.1080/19382014.2025.2479911. Epub 2025 Mar 16.
10
Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights.
Life Metab. 2024 Nov 19;4(1):loae038. doi: 10.1093/lifemeta/loae038. eCollection 2025 Feb.

本文引用的文献

1
Glucose Regulation of β-Cell KATP Channels: Is a New Model Needed?
Diabetes. 2024 Jun 1;73(6):849-855. doi: 10.2337/dbi23-0031.
2
K channel activity and slow oscillations in pancreatic beta cells are regulated by mitochondrial ATP production.
J Physiol. 2023 Dec;601(24):5655-5667. doi: 10.1113/JP284982. Epub 2023 Nov 20.
4
Scanning electron microscopy of human islet cilia.
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2302624120. doi: 10.1073/pnas.2302624120. Epub 2023 May 19.
7
Metabolic cycles and signals for insulin secretion.
Cell Metab. 2022 Jul 5;34(7):947-968. doi: 10.1016/j.cmet.2022.06.003. Epub 2022 Jun 20.
8
Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health.
Cell Metab. 2020 Nov 3;32(5):751-766.e11. doi: 10.1016/j.cmet.2020.10.006.
9
Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway.
Cell Metab. 2020 Nov 3;32(5):736-750.e5. doi: 10.1016/j.cmet.2020.10.007.
10
Cytosolic, but not matrix, calcium is essential for adjustment of mitochondrial pyruvate supply.
J Biol Chem. 2020 Apr 3;295(14):4383-4397. doi: 10.1074/jbc.RA119.011902. Epub 2020 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验