Department of Neurology, University of Miami Miller School of Medicine, Miami, FL.
Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL.
Diabetes. 2023 Sep 1;72(9):1262-1276. doi: 10.2337/db22-0728.
Mitochondrial metabolism and oxidative respiration are crucial for pancreatic β-cell function and stimulus secretion coupling. Oxidative phosphorylation (OxPhos) produces ATP and other metabolites that potentiate insulin secretion. However, the contribution of individual OxPhos complexes to β-cell function is unknown. We generated β-cell-specific, inducible OxPhos complex knock-out (KO) mouse models to investigate the effects of disrupting complex I, complex III, or complex IV on β-cell function. Although all KO models had similar mitochondrial respiratory defects, complex III caused early hyperglycemia, glucose intolerance, and loss of glucose-stimulated insulin secretion in vivo. However, ex vivo insulin secretion did not change. Complex I and IV KO models showed diabetic phenotypes much later. Mitochondrial Ca2+ responses to glucose stimulation 3 weeks after gene deletion ranged from not affected to severely disrupted, depending on the complex targeted, supporting the unique roles of each complex in β-cell signaling. Mitochondrial antioxidant enzyme immunostaining increased in islets from complex III KO, but not from complex I or IV KO mice, indicating that severe diabetic phenotype in the complex III-deficient mice is causing alterations in cellular redox status. The present study highlights that defects in individual OxPhos complexes lead to different pathogenic outcomes.
Mitochondrial metabolism is critical for β-cell insulin secretion, and mitochondrial dysfunction is involved in type 2 diabetes pathogenesis. We determined whether individual oxidative phosphorylation complexes contribute uniquely to β-cell function. Compared with loss of complex I and IV, loss of complex III resulted in severe in vivo hyperglycemia and altered β-cell redox status. Loss of complex III altered cytosolic and mitochondrial Ca2+ signaling and increased expression of glycolytic enzymes. Individual complexes contribute differently to β-cell function. This underscores the role of mitochondrial oxidative phosphorylation complex defects in diabetes pathogenesis.
线粒体代谢和氧化呼吸对于胰腺β细胞的功能和刺激分泌偶联至关重要。氧化磷酸化(OxPhos)产生 ATP 和其他代谢物,增强胰岛素分泌。然而,单个 OxPhos 复合物对β细胞功能的贡献尚不清楚。我们生成了β细胞特异性、诱导型 OxPhos 复合物敲除(KO)小鼠模型,以研究破坏复合物 I、复合物 III 或复合物 IV 对β细胞功能的影响。尽管所有 KO 模型都有相似的线粒体呼吸缺陷,但复合物 III 导致了早期高血糖、葡萄糖不耐受和体内葡萄糖刺激的胰岛素分泌丧失。然而,离体胰岛素分泌没有变化。复合物 I 和 IV KO 模型在以后才出现糖尿病表型。基因缺失 3 周后,葡萄糖刺激下线粒体 Ca2+ 反应的范围从不受影响到严重破坏,这取决于靶向的复合物,支持每个复合物在β细胞信号中的独特作用。复合物 III KO 胰岛中的线粒体抗氧化酶免疫染色增加,但复合物 I 或 IV KO 小鼠则没有,表明严重的复合物 III 缺陷型小鼠的糖尿病表型是由于细胞氧化还原状态的改变。本研究强调了单个 OxPhos 复合物的缺陷会导致不同的致病结果。
线粒体代谢对于β细胞胰岛素分泌至关重要,线粒体功能障碍与 2 型糖尿病的发病机制有关。我们确定了单个氧化磷酸化复合物是否对β细胞功能有独特的贡献。与复合物 I 和 IV 的缺失相比,复合物 III 的缺失导致严重的体内高血糖和β细胞氧化还原状态的改变。复合物 III 的缺失改变了胞质和线粒体 Ca2+ 信号,并增加了糖酵解酶的表达。各个复合物对β细胞功能的贡献不同。这突出了线粒体氧化磷酸化复合物缺陷在糖尿病发病机制中的作用。