Suppr超能文献

线粒体复合物 III 缺陷而非复合物 I 或 IV 缺陷导致小鼠早期β细胞功能障碍和高血糖。

A Defect in Mitochondrial Complex III but Not in Complexes I or IV Causes Early β-Cell Dysfunction and Hyperglycemia in Mice.

机构信息

Department of Neurology, University of Miami Miller School of Medicine, Miami, FL.

Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL.

出版信息

Diabetes. 2023 Sep 1;72(9):1262-1276. doi: 10.2337/db22-0728.

Abstract

UNLABELLED

Mitochondrial metabolism and oxidative respiration are crucial for pancreatic β-cell function and stimulus secretion coupling. Oxidative phosphorylation (OxPhos) produces ATP and other metabolites that potentiate insulin secretion. However, the contribution of individual OxPhos complexes to β-cell function is unknown. We generated β-cell-specific, inducible OxPhos complex knock-out (KO) mouse models to investigate the effects of disrupting complex I, complex III, or complex IV on β-cell function. Although all KO models had similar mitochondrial respiratory defects, complex III caused early hyperglycemia, glucose intolerance, and loss of glucose-stimulated insulin secretion in vivo. However, ex vivo insulin secretion did not change. Complex I and IV KO models showed diabetic phenotypes much later. Mitochondrial Ca2+ responses to glucose stimulation 3 weeks after gene deletion ranged from not affected to severely disrupted, depending on the complex targeted, supporting the unique roles of each complex in β-cell signaling. Mitochondrial antioxidant enzyme immunostaining increased in islets from complex III KO, but not from complex I or IV KO mice, indicating that severe diabetic phenotype in the complex III-deficient mice is causing alterations in cellular redox status. The present study highlights that defects in individual OxPhos complexes lead to different pathogenic outcomes.

ARTICLE HIGHLIGHTS

Mitochondrial metabolism is critical for β-cell insulin secretion, and mitochondrial dysfunction is involved in type 2 diabetes pathogenesis. We determined whether individual oxidative phosphorylation complexes contribute uniquely to β-cell function. Compared with loss of complex I and IV, loss of complex III resulted in severe in vivo hyperglycemia and altered β-cell redox status. Loss of complex III altered cytosolic and mitochondrial Ca2+ signaling and increased expression of glycolytic enzymes. Individual complexes contribute differently to β-cell function. This underscores the role of mitochondrial oxidative phosphorylation complex defects in diabetes pathogenesis.

摘要

未标记

线粒体代谢和氧化呼吸对于胰腺β细胞的功能和刺激分泌偶联至关重要。氧化磷酸化(OxPhos)产生 ATP 和其他代谢物,增强胰岛素分泌。然而,单个 OxPhos 复合物对β细胞功能的贡献尚不清楚。我们生成了β细胞特异性、诱导型 OxPhos 复合物敲除(KO)小鼠模型,以研究破坏复合物 I、复合物 III 或复合物 IV 对β细胞功能的影响。尽管所有 KO 模型都有相似的线粒体呼吸缺陷,但复合物 III 导致了早期高血糖、葡萄糖不耐受和体内葡萄糖刺激的胰岛素分泌丧失。然而,离体胰岛素分泌没有变化。复合物 I 和 IV KO 模型在以后才出现糖尿病表型。基因缺失 3 周后,葡萄糖刺激下线粒体 Ca2+ 反应的范围从不受影响到严重破坏,这取决于靶向的复合物,支持每个复合物在β细胞信号中的独特作用。复合物 III KO 胰岛中的线粒体抗氧化酶免疫染色增加,但复合物 I 或 IV KO 小鼠则没有,表明严重的复合物 III 缺陷型小鼠的糖尿病表型是由于细胞氧化还原状态的改变。本研究强调了单个 OxPhos 复合物的缺陷会导致不同的致病结果。

文章亮点

线粒体代谢对于β细胞胰岛素分泌至关重要,线粒体功能障碍与 2 型糖尿病的发病机制有关。我们确定了单个氧化磷酸化复合物是否对β细胞功能有独特的贡献。与复合物 I 和 IV 的缺失相比,复合物 III 的缺失导致严重的体内高血糖和β细胞氧化还原状态的改变。复合物 III 的缺失改变了胞质和线粒体 Ca2+ 信号,并增加了糖酵解酶的表达。各个复合物对β细胞功能的贡献不同。这突出了线粒体氧化磷酸化复合物缺陷在糖尿病发病机制中的作用。

相似文献

3
Loss of the voltage-gated proton channel Hv1 decreases insulin secretion and leads to hyperglycemia and glucose intolerance in mice.
J Biol Chem. 2020 Mar 13;295(11):3601-3613. doi: 10.1074/jbc.RA119.010489. Epub 2020 Jan 16.
4
Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration.
J Nutr Biochem. 2017 Nov;49:30-41. doi: 10.1016/j.jnutbio.2017.07.015. Epub 2017 Jul 27.
5
A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes.
PLoS Genet. 2016 May 19;12(5):e1006033. doi: 10.1371/journal.pgen.1006033. eCollection 2016 May.
6
Absence of in mouse pancreatic beta cells results in hyperinsulinemia.
Am J Physiol Endocrinol Metab. 2024 Jan 1;326(1):E92-E105. doi: 10.1152/ajpendo.00117.2023. Epub 2023 Nov 29.
8
MicroRNA 29 modulates β-cell mitochondrial metabolism and insulin secretion via underlying miR-29-OXPHOS complex pathways.
Acta Physiol (Oxf). 2024 Aug;240(8):e14180. doi: 10.1111/apha.14180. Epub 2024 May 27.
9
NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells.
Mol Metab. 2017 Apr 21;6(6):535-547. doi: 10.1016/j.molmet.2017.04.004. eCollection 2017 Jun.

引用本文的文献

5
HADHA Regulates Respiratory Complex Assembly and Couples FAO and OXPHOS.
Adv Sci (Weinh). 2024 Dec;11(47):e2405147. doi: 10.1002/advs.202405147. Epub 2024 Nov 3.
6
Glucose Regulation of β-Cell KATP Channels: It Is Time for a New Model!
Diabetes. 2024 Jun 1;73(6):856-863. doi: 10.2337/dbi23-0032.
7
Mitochondrial bioenergetics, metabolism, and beyond in pancreatic β-cells and diabetes.
Front Mol Biosci. 2024 Feb 9;11:1354199. doi: 10.3389/fmolb.2024.1354199. eCollection 2024.

本文引用的文献

3
Metabolic cycles and signals for insulin secretion.
Cell Metab. 2022 Jul 5;34(7):947-968. doi: 10.1016/j.cmet.2022.06.003. Epub 2022 Jun 20.
4
The Role of Thioredoxin/Peroxiredoxin in the β-Cell Defense Against Oxidative Damage.
Front Endocrinol (Lausanne). 2021 Sep 7;12:718235. doi: 10.3389/fendo.2021.718235. eCollection 2021.
5
LDHA is enriched in human islet alpha cells and upregulated in type 2 diabetes.
Biochem Biophys Res Commun. 2021 Sep 3;568:158-166. doi: 10.1016/j.bbrc.2021.06.065. Epub 2021 Jul 1.
6
Contribution of Mitochondria to Insulin Secretion by Various Secretagogues.
Antioxid Redox Signal. 2022 May;36(13-15):920-952. doi: 10.1089/ars.2021.0113. Epub 2021 Aug 24.
7
Mitochondrial clearance of calcium facilitated by MICU2 controls insulin secretion.
Mol Metab. 2021 Sep;51:101239. doi: 10.1016/j.molmet.2021.101239. Epub 2021 Apr 28.
8
Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health.
Cell Metab. 2020 Nov 3;32(5):751-766.e11. doi: 10.1016/j.cmet.2020.10.006.
9
Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway.
Cell Metab. 2020 Nov 3;32(5):736-750.e5. doi: 10.1016/j.cmet.2020.10.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验