Suppr超能文献

促进 Sinh Cosh 优化器和算术优化算法,以提高吲哚喹啉衍生物生物活性的预测能力。

Boosting Sinh Cosh Optimizer and arithmetic optimization algorithm for improved prediction of biological activities for indoloquinoline derivatives.

机构信息

Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt.

Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI), Tianjin University. Shenzhen, Guangdong, 518055, China.

出版信息

Chemosphere. 2024 Jul;359:142362. doi: 10.1016/j.chemosphere.2024.142362. Epub 2024 May 18.

Abstract

Quantitative Structure Activity Relation (QSAR) models are mathematical techniques used to link structural characteristics with biological activities, thus considered a useful tool in drug discovery, hazard evaluation, and identifying potentially lethal molecules. The QSAR regulations are determined by the Organization for Economic Cooperation and Development (OECD). QSAR models are helpful in discovering new drugs and chemicals to treat severe diseases. In order to improve the QSAR model's predictive power for biological activities of naturally occurring indoloquinoline derivatives against different cancer cell lines, a modified machine learning (ML) technique is presented in this paper. The Arithmetic Optimization Algorithm (AOA) operators are used in the suggested model to enhance the performance of the Sinh Cosh Optimizer (SCHO). Moreover, this improvement functions as a feature selection method that eliminates superfluous descriptors. An actual dataset gathered from previously published research is utilized to evaluate the performance of the suggested model. Moreover, a comparison is made between the outcomes of the suggested model and other established methodologies. In terms of pIC50 values for different indoloquinoline derivatives against human MV4-11 (leukemia), human HCT116 (colon cancer), and human A549 (lung cancer) cell lines, the suggested model achieves root mean square error (RMSE) of 0.6822, 0.6787, 0.4411, and 0.4477, respectively. The biological application of indoloquinoline derivatives as possible anticancer medicines is predicted with a high degree of accuracy by the suggested model, as evidenced by these findings.

摘要

定量构效关系 (QSAR) 模型是一种将结构特征与生物活性联系起来的数学技术,因此被认为是药物发现、危害评估和识别潜在致命分子的有用工具。QSAR 法规由经济合作与发展组织 (OECD) 确定。QSAR 模型有助于发现新的药物和化学品,以治疗严重疾病。为了提高 QSAR 模型对天然存在的吲哚喹啉衍生物对不同癌细胞系生物活性的预测能力,本文提出了一种改进的机器学习 (ML) 技术。所提出的模型中使用了算术优化算法 (AOA) 算子来增强 Sinh Cosh 优化器 (SCHO) 的性能。此外,这种改进作为一种特征选择方法,可以消除多余的描述符。实际数据集取自先前发表的研究,用于评估所提出模型的性能。此外,还对所提出模型的结果与其他已建立的方法进行了比较。在所提出模型中,对于不同吲哚喹啉衍生物对人 MV4-11(白血病)、人 HCT116(结肠癌)和人 A549(肺癌)细胞系的 pIC50 值,建议的模型分别达到 0.6822、0.6787、0.4411 和 0.4477 的均方根误差 (RMSE)。这些发现表明,所提出的模型可以高度准确地预测吲哚喹啉衍生物作为潜在抗癌药物的生物应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验