Ekinci Serdar, Izci Davut, Bajaj Mohit, Blazek Vojtech
Department of Computer Engineering, Batman University, Batman, Turkey.
Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan.
Sci Rep. 2025 Jan 22;15(1):2825. doi: 10.1038/s41598-025-86597-5.
Load frequency control (LFC) is critical for maintaining stability in interconnected power systems, addressing frequency deviations and tie-line power fluctuations due to system disturbances. Existing methods often face challenges, including limited robustness, poor adaptability to dynamic conditions, and early convergence in optimization. This paper introduces a novel application of the sinh cosh optimizer (SCHO) to design proportional-integral (PI) controllers for a hybrid photovoltaic (PV) and thermal generator-based two-area power system. The SCHO algorithm's balanced exploration and exploitation mechanisms enable effective tuning of PI controllers, overcoming challenges such as local minima entrapment and limited convergence speeds observed in conventional metaheuristics. Comprehensive simulations validate the proposed approach, demonstrating superior performance across various metrics. The SCHO-based PI controller achieves faster settling times (e.g., 1.6231 s and 2.4615 s for frequency deviations in Area 1 and Area 2, respectively) and enhanced robustness under parameter variations and solar radiation fluctuations. Additionally, comparisons with the controllers based on the salp swarm algorithm, whale optimization algorithm, and firefly algorithm confirm its significant advantages, including a 25-50% improvement in integral error indices (IAE, ITAE, ISE, ITSE). These results highlight the SCHO-based PI controller's effectiveness and reliability in modern power systems with hybrid and renewable energy sources.
负荷频率控制(LFC)对于维持互联电力系统的稳定性、解决由于系统干扰引起的频率偏差和联络线功率波动至关重要。现有方法常常面临挑战,包括鲁棒性有限、对动态条件的适应性差以及优化过程中的过早收敛。本文介绍了双曲正弦余弦优化器(SCHO)在基于混合光伏(PV)和热力发电机的两区域电力系统比例积分(PI)控制器设计中的一种新颖应用。SCHO算法的平衡探索和利用机制能够有效地调整PI控制器,克服了传统元启发式算法中出现的诸如陷入局部极小值和收敛速度有限等挑战。全面的仿真验证了所提出的方法,在各项指标上都展示出了卓越的性能。基于SCHO的PI控制器实现了更快的调节时间(例如,区域1和区域2频率偏差的调节时间分别为1.6231秒和2.4615秒),并且在参数变化和太阳辐射波动下具有更强的鲁棒性。此外,与基于樽海鞘群算法、鲸鱼优化算法和萤火虫算法的控制器进行比较,证实了其显著优势,包括积分误差指标(IAE、ITAE、ISE、ITSE)提高25 - 50%。这些结果凸显了基于SCHO的PI控制器在具有混合和可再生能源的现代电力系统中的有效性和可靠性。