Suppr超能文献

智能手机拍摄的心电图照片中心脏状况的自动检测。

Automatic detection of cardiac conditions from photos of electrocardiogram captured by smartphones.

机构信息

Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China

Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

出版信息

Heart. 2024 Aug 14;110(17):1074-1082. doi: 10.1136/heartjnl-2023-323822.

Abstract

BACKGROUND

Researchers have developed machine learning-based ECG diagnostic algorithms that match or even surpass cardiologist level of performance. However, most of them cannot be used in real-world, as older generation ECG machines do not permit installation of new algorithms.

OBJECTIVE

To develop a smartphone application that automatically extract ECG waveforms from photos and to convert them to voltage-time series for downstream analysis by a variety of diagnostic algorithms built by researchers.

METHODS

A novel approach of using objective detection and image segmentation models to automatically extract ECG waveforms from photos taken by clinicians was devised. Modular machine learning models were developed to sequentially perform waveform identification, gridline removal, and scale calibration. The extracted data were then analysed using a machine learning-based cardiac rhythm classifier.

RESULTS

Waveforms from 40 516 scanned and 444 photographed ECGs were automatically extracted. 12 828 of 13 258 (96.8%) scanned and 5399 of 5743 (94.0%) photographed waveforms were correctly cropped and labelled. 11 604 of 12 735 (91.1%) scanned and 5062 of 5752 (88.0%) photographed waveforms achieved successful voltage-time signal extraction after automatic gridline and background noise removal. In a proof-of-concept demonstration, an atrial fibrillation diagnostic algorithm achieved 91.3% sensitivity, 94.2% specificity, 95.6% positive predictive value, 88.6% negative predictive value and 93.4% F1 score, using photos of ECGs as input.

CONCLUSION

Object detection and image segmentation models allow automatic extraction of ECG signals from photos for downstream diagnostics. This novel pipeline circumvents the need for costly ECG hardware upgrades, thereby paving the way for large-scale implementation of machine learning-based diagnostic algorithms.

摘要

背景

研究人员已经开发出基于机器学习的心电图诊断算法,这些算法的性能与心脏病专家相当,甚至超越了他们。然而,由于旧一代心电图机不允许安装新算法,大多数算法无法在实际中使用。

目的

开发一种智能手机应用程序,能够自动从照片中提取心电图波形,并将其转换为电压-时间序列,以便研究人员构建的各种诊断算法进行下游分析。

方法

我们设计了一种新颖的方法,使用客观检测和图像分割模型,自动从临床医生拍摄的照片中提取心电图波形。开发了模块化的机器学习模型,以顺序执行波形识别、网格线去除和比例校准。然后,使用基于机器学习的心脏节律分类器对提取的数据进行分析。

结果

自动从 40516 张扫描心电图和 444 张拍摄心电图中提取了波形。在 13258 张扫描心电图中,有 12828 张(96.8%),在 5743 张拍摄心电图中,有 5399 张(94.0%)被正确裁剪和标记。在 12735 张扫描心电图中,有 11604 张(91.1%),在 5752 张拍摄心电图中,有 5062 张(88.0%)成功地去除了网格线和背景噪声,实现了电压-时间信号提取。在一个概念验证演示中,使用心电图照片作为输入,心房颤动诊断算法的灵敏度为 91.3%,特异性为 94.2%,阳性预测值为 95.6%,阴性预测值为 88.6%,F1 得分为 93.4%。

结论

目标检测和图像分割模型允许从照片中自动提取心电图信号,用于下游诊断。这种新的方法避免了昂贵的心电图硬件升级的需要,为基于机器学习的诊断算法的大规模实施铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验