Suppr超能文献

卷积神经网络性能及 12 导联心电图解释的可解释性技术。

Performance of a Convolutional Neural Network and Explainability Technique for 12-Lead Electrocardiogram Interpretation.

机构信息

RISE Lab, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley.

Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco.

出版信息

JAMA Cardiol. 2021 Nov 1;6(11):1285-1295. doi: 10.1001/jamacardio.2021.2746.

Abstract

IMPORTANCE

Millions of clinicians rely daily on automated preliminary electrocardiogram (ECG) interpretation. Critical comparisons of machine learning-based automated analysis against clinically accepted standards of care are lacking.

OBJECTIVE

To use readily available 12-lead ECG data to train and apply an explainability technique to a convolutional neural network (CNN) that achieves high performance against clinical standards of care.

DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study was conducted using data from January 1, 2003, to December 31, 2018. Data were obtained in a commonly available 12-lead ECG format from a single-center tertiary care institution. All patients aged 18 years or older who received ECGs at the University of California, San Francisco, were included, yielding a total of 365 009 patients. Data were analyzed from January 1, 2019, to March 2, 2021.

EXPOSURES

A CNN was trained to predict the presence of 38 diagnostic classes in 5 categories from 12-lead ECG data. A CNN explainability technique called LIME (Linear Interpretable Model-Agnostic Explanations) was used to visualize ECG segments contributing to CNN diagnoses.

MAIN OUTCOMES AND MEASURES

Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were calculated for the CNN in the holdout test data set against cardiologist clinical diagnoses. For a second validation, 3 electrophysiologists provided consensus committee diagnoses against which the CNN, cardiologist clinical diagnosis, and MUSE (GE Healthcare) automated analysis performance was compared using the F1 score; AUC, sensitivity, and specificity were also calculated for the CNN against the consensus committee.

RESULTS

A total of 992 748 ECGs from 365 009 adult patients (mean [SD] age, 56.2 [17.6] years; 183 600 women [50.3%]; and 175 277 White patients [48.0%]) were included in the analysis. In 91 440 test data set ECGs, the CNN demonstrated an AUC of at least 0.960 for 32 of 38 classes (84.2%). Against the consensus committee diagnoses, the CNN had higher frequency-weighted mean F1 scores than both cardiologists and MUSE in all 5 categories (CNN frequency-weighted F1 score for rhythm, 0.812; conduction, 0.729; chamber diagnosis, 0.598; infarct, 0.674; and other diagnosis, 0.875). For 32 of 38 classes (84.2%), the CNN had AUCs of at least 0.910 and demonstrated comparable F1 scores and higher sensitivity than cardiologists, except for atrial fibrillation (CNN F1 score, 0.847 vs cardiologist F1 score, 0.881), junctional rhythm (0.526 vs 0.727), premature ventricular complex (0.786 vs 0.800), and Wolff-Parkinson-White (0.800 vs 0.842). Compared with MUSE, the CNN had higher F1 scores for all classes except supraventricular tachycardia (CNN F1 score, 0.696 vs MUSE F1 score, 0.714). The LIME technique highlighted physiologically relevant ECG segments.

CONCLUSIONS AND RELEVANCE

The results of this cross-sectional study suggest that readily available ECG data can be used to train a CNN algorithm to achieve comparable performance to clinical cardiologists and exceed the performance of MUSE automated analysis for most diagnoses, with some exceptions. The LIME explainability technique applied to CNNs highlights physiologically relevant ECG segments that contribute to the CNN's diagnoses.

摘要

重要性

数以百万计的临床医生每天都依赖于自动化的初步心电图(ECG)解释。缺乏对基于机器学习的自动分析与临床护理标准的关键比较。

目的

使用现成的 12 导联 ECG 数据来训练和应用解释技术,对卷积神经网络(CNN)进行训练,该网络在符合临床护理标准的性能方面表现出色。

设计、设置和参与者:这项横断面研究使用 2003 年 1 月 1 日至 2018 年 12 月 31 日的数据进行。数据来自单一中心三级医疗机构的常用 12 导联 ECG 格式。包括所有在加利福尼亚大学旧金山分校接受 ECG 的年龄在 18 岁或以上的患者,共 365009 例患者。数据分析于 2019 年 1 月 1 日至 2021 年 3 月 2 日进行。

暴露

一个 CNN 被训练来预测 5 个类别中的 38 个诊断类别的存在,来自 12 导联 ECG 数据。使用一种名为 LIME(线性可解释模型不可知的解释)的 CNN 解释技术来可视化对 CNN 诊断有贡献的 ECG 段。

主要结果和措施

在保留测试数据集的 AUC(接受者操作特征曲线下的面积)、敏感性和特异性方面,与心脏病专家的临床诊断相比,CNN 的表现如何。为了进行第二次验证,3 位电生理学家提供了共识委员会的诊断,与该委员会相比,CNN、心脏病专家的临床诊断和 MUSE(GE Healthcare)自动分析的性能使用 F1 分数进行比较;还计算了 CNN 与共识委员会的 AUC、敏感性和特异性。

结果

在总共 365009 名成年患者(平均[标准差]年龄为 56.2[17.6]岁;女性 183600 人[50.3%];白种人 175277 人[48.0%])的 992748 份 ECG 中进行了分析。在 91440 份测试数据集 ECG 中,CNN 对 38 个类别中的 32 个(84.2%)至少有 0.960 的 AUC。在与共识委员会的诊断相比,CNN 在所有 5 个类别中的频率加权平均 F1 分数均高于心脏病专家和 MUSE,包括节律(CNN 频率加权 F1 分数为 0.812)、传导(0.729)、腔室诊断(0.598)、梗死(0.674)和其他诊断(0.875)。在 38 个类别中的 32 个(84.2%)中,CNN 的 AUC 至少为 0.910,除了心房颤动(CNN 的 F1 分数为 0.847,而心脏病专家的 F1 分数为 0.881)、结性节律(0.526 vs 0.727)、室性早搏(0.786 vs 0.800)和 Wolff-Parkinson-White(0.800 vs 0.842)外,F1 评分与心脏病专家相当,敏感性更高。与 MUSE 相比,除了室上性心动过速(CNN 的 F1 分数为 0.696,而 MUSE 的 F1 分数为 0.714)外,CNN 的 F1 分数更高。LIME 技术突出了生理相关的 ECG 段。

结论和相关性

这项横断面研究的结果表明,现成的 ECG 数据可用于训练 CNN 算法,以达到与临床心脏病专家相当的性能,并超过 MUSE 自动分析的大多数诊断性能,除了一些例外。应用于 CNN 的 LIME 解释技术突出了对 CNN 诊断有贡献的生理相关 ECG 段。

相似文献

3
Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study.
Lancet Digit Health. 2020 Jul;2(7):e348-e357. doi: 10.1016/S2589-7500(20)30107-2. Epub 2020 Jun 4.
4
5
6
7
Deep Learning-Augmented ECG Analysis for Screening and Genotype Prediction of Congenital Long QT Syndrome.
JAMA Cardiol. 2024 Apr 1;9(4):377-384. doi: 10.1001/jamacardio.2024.0039.
8
Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery.
Circ Cardiovasc Qual Outcomes. 2019 Sep;12(9):e005289. doi: 10.1161/CIRCOUTCOMES.118.005289. Epub 2019 Sep 5.
9
Identification of supraventricular tachycardia mechanisms with surface electrocardiograms using a convolutional neural network.
Heart Rhythm O2. 2023 Jul 13;4(8):491-499. doi: 10.1016/j.hroo.2023.07.004. eCollection 2023 Aug.

引用本文的文献

1
An Electrocardiogram Foundation Model Built on over 10 Million Recordings.
NEJM AI. 2025 Jul;2(7). doi: 10.1056/aioa2401033. Epub 2025 Jun 26.
2
A deep foundation model for electrocardiogram interpretation: enabling rare disease detection through transfer learning.
Eur Heart J Digit Health. 2025 May 21;6(4):619-623. doi: 10.1093/ehjdh/ztaf051. eCollection 2025 Jul.
3
A deep learning phenome wide association study of the electrocardiogram.
Eur Heart J Digit Health. 2025 May 8;6(4):595-607. doi: 10.1093/ehjdh/ztaf047. eCollection 2025 Jul.
5
Artificial Intelligence in Diagnosis of Long QT Syndrome: A Review of Current State, Challenges, and Future Perspectives.
Mayo Clin Proc Digit Health. 2023 Dec 18;2(1):21-31. doi: 10.1016/j.mcpdig.2023.11.003. eCollection 2024 Mar.
6
The role of artificial intelligence in cardiovascular research: Fear less and live bolder.
Eur J Clin Invest. 2025 Apr;55 Suppl 1(Suppl 1):e14364. doi: 10.1111/eci.14364.
7
Revolutionizing electrocardiography: the role of artificial intelligence in modern cardiac diagnostics.
Ann Med Surg (Lond). 2025 Jan 9;87(1):161-170. doi: 10.1097/MS9.0000000000002778. eCollection 2025 Jan.
9
Specialized ECG data augmentation method: leveraging precordial lead positional variability.
Biomed Eng Lett. 2025 Jan 8;15(2):377-388. doi: 10.1007/s13534-024-00455-3. eCollection 2025 Mar.
10
Smartwatch ECG and artificial intelligence in detecting acute coronary syndrome compared to traditional 12-lead ECG.
Int J Cardiol Heart Vasc. 2024 Dec 1;56:101573. doi: 10.1016/j.ijcha.2024.101573. eCollection 2025 Feb.

本文引用的文献

1
A comprehensive artificial intelligence-enabled electrocardiogram interpretation program.
Cardiovasc Digit Health J. 2020 Sep 8;1(2):62-70. doi: 10.1016/j.cvdhj.2020.08.005. eCollection 2020 Sep-Oct.
2
Finding New Meaning in Everyday Electrocardiograms-Leveraging Deep Learning to Expand Our Diagnostic Toolkit.
JAMA Cardiol. 2021 May 1;6(5):493-494. doi: 10.1001/jamacardio.2020.7460.
3
Federated Learning for Healthcare Informatics.
J Healthc Inform Res. 2021;5(1):1-19. doi: 10.1007/s41666-020-00082-4. Epub 2020 Nov 12.
4
Automatic diagnosis of the 12-lead ECG using a deep neural network.
Nat Commun. 2020 Apr 9;11(1):1760. doi: 10.1038/s41467-020-15432-4.
5
Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram.
J Am Coll Cardiol. 2020 Feb 25;75(7):722-733. doi: 10.1016/j.jacc.2019.12.030.
6
Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery.
Circ Cardiovasc Qual Outcomes. 2019 Sep;12(9):e005289. doi: 10.1161/CIRCOUTCOMES.118.005289. Epub 2019 Sep 5.
8
9
Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram.
Nat Med. 2019 Jan;25(1):70-74. doi: 10.1038/s41591-018-0240-2. Epub 2019 Jan 7.
10
Federated learning of predictive models from federated Electronic Health Records.
Int J Med Inform. 2018 Apr;112:59-67. doi: 10.1016/j.ijmedinf.2018.01.007. Epub 2018 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验