Ying Ting, Xiong Yu, Peng Huarong, Yang Ruijie, Mei Liang, Zhang Zhen, Zheng Weikang, Yan Ruixin, Zhang Yue, Hu Honglu, Ma Chen, Chen Ye, Xu Xingtao, Yang Juan, Voiry Damien, Tang Chuyang Y, Fan Jun, Zeng Zhiyuan
Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
Department of Chemistry, Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
Adv Mater. 2024 Aug;36(31):e2403385. doi: 10.1002/adma.202403385. Epub 2024 May 29.
Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1T'-MoS) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm under an ultrahigh scan rate of 1000 mV s with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS electrode, is reported. Furthermore, 1T'-MoS electrode demonstrates exceptional volumetric desalination capacity of 65.1 mg cm in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1T'-MoS interlayer to accommodate cations such as Na, K, Ca, and Mg, which in turn enhances the capacity. Theoretical analysis unveils that 1T' phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination.
电容去离子化(CDI)已成为一种从低盐度微咸水中回收淡水的有前景的技术。由于体积吸附容量过低,它在特定场景(如家庭、岛屿或海上平台)中仍不适用。在本研究中,报道了一种通过剥离的纳米片重新堆叠获得的具有紧凑结构的高密度半金属二硫化钼(1T'-MoS)电极,在1000 mV s的超高扫描速率下,其电容高达≈277.5 F cm,电荷转移电阻更低,电化学活性表面积比2H-MoS电极高出近十倍。此外,在CDI实验中,1T'-MoS电极表现出65.1 mg cm的出色体积脱盐能力。非原位X射线衍射(XRD)表明,阳离子存储机制是1T'-MoS层间动态扩展以容纳Na、K、Ca和Mg等阳离子,这反过来提高了容量。理论分析表明,1T'相比2H相在热力学上更有利,离子水合和通道限制在增强离子吸附方面也起着关键作用。总体而言,这项工作为设计用于CDI脱盐的具有高体积性能的紧凑二维层状纳米材料提供了一种新方法。