文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于氧化铁和金纳米粒子的高效策略合成可调 pH 响应性杂化胶束。

Efficient Strategy to Synthesize Tunable pH-Responsive Hybrid Micelles Based on Iron Oxide and Gold Nanoparticles.

机构信息

Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain.

出版信息

Langmuir. 2024 Jun 4;40(22):11775-11784. doi: 10.1021/acs.langmuir.4c01318. Epub 2024 May 20.


DOI:10.1021/acs.langmuir.4c01318
PMID:38769025
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11155236/
Abstract

The preparation of multifunctional nanomaterials based on inorganic nanoparticles with organic materials has emerged as a promising strategy for the development of new nanomedicines for in vitro and in vivo biomedical applications. Here, we synthesized pH-responsive hybrid inorganic micelles by combining a novel pH-responsive amphiphilic molecule with hydrophobic payloads. This amphiphile was synthesized in a one-pot reaction and self-assembled readily into micelles under acidic pH conditions. In the presence of hydrophobic NP payloads such as AuNPs or IONPs, the amphiphile self-organized around them through hydrophobic interactions, resulting in the formation of colloidally stable hybrid micelles. The size of the hydrophobic NPs determined the pH-response of the inorganic hybrid micelles, which is tuned from pH 7 to 11 for our pH-responsive amphiphilic molecule. This achievement represents a novel approach for the synthesis of tunable pH-responsive hybrid micelles based on inorganic NPs for biomedical imaging, hyperthermia treatment, and also drug delivery nanosystems.

摘要

基于无机纳米粒子与有机材料的多功能纳米材料的制备,已经成为开发用于体外和体内生物医学应用的新型纳米药物的一种很有前途的策略。在这里,我们通过将一种新型的 pH 响应性两亲分子与疏水性药物结合,合成了 pH 响应性杂化无机胶束。这种两亲分子通过一锅反应合成,在酸性 pH 条件下容易自组装成胶束。在存在疏水性 NP 药物(如 AuNPs 或 IONPs)的情况下,两亲分子通过疏水相互作用围绕它们自组织,形成胶体稳定的杂化胶束。疏水性 NPs 的大小决定了无机杂化胶束的 pH 响应性,我们的 pH 响应性两亲分子的 pH 响应范围从 7 到 11。这一成就代表了一种基于无机 NPs 的可调谐 pH 响应性杂化胶束的新方法,可用于生物医学成像、热疗和药物输送纳米系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/6bafc43ec52a/la4c01318_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/8410561bad9d/la4c01318_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/a86bb6376f50/la4c01318_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/a1d7498e2870/la4c01318_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/0043b7ed9fc2/la4c01318_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/fbc72536151d/la4c01318_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/b826977463a6/la4c01318_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/c90464b7485b/la4c01318_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/67cee2ee911b/la4c01318_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/243dc91ace03/la4c01318_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/bbded940f0ec/la4c01318_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/6bafc43ec52a/la4c01318_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/8410561bad9d/la4c01318_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/a86bb6376f50/la4c01318_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/a1d7498e2870/la4c01318_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/0043b7ed9fc2/la4c01318_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/fbc72536151d/la4c01318_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/b826977463a6/la4c01318_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/c90464b7485b/la4c01318_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/67cee2ee911b/la4c01318_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/243dc91ace03/la4c01318_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/bbded940f0ec/la4c01318_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf5/11155236/6bafc43ec52a/la4c01318_0010.jpg

相似文献

[1]
Efficient Strategy to Synthesize Tunable pH-Responsive Hybrid Micelles Based on Iron Oxide and Gold Nanoparticles.

Langmuir. 2024-6-4

[2]
Gold/Pentablock Terpolymer Hybrid Multifunctional Nanocarriers for Controlled Delivery of Tamoxifen: Effect of Nanostructure on Release Kinetics.

Molecules. 2022-6-11

[3]
pH-Sensitive Polymeric Nanoparticles with Gold(I) Compound Payloads Synergistically Induce Cancer Cell Death through Modulation of Autophagy.

Mol Pharm. 2015-8-3

[4]
Facile preparation of pH-sensitive micelles self-assembled from amphiphilic chondroitin sulfate-histamine conjugate for triggered intracellular drug release.

Colloids Surf B Biointerfaces. 2013-12-24

[5]
pH-induced vesicle-to-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye.

Langmuir. 2015

[6]
Self-assembled peptide beads used as a template for ordered gold nanoparticle superstructures.

Colloids Surf B Biointerfaces. 2013-9-12

[7]
Drug-loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR imaging.

Langmuir. 2011-11-11

[8]
Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.

Biomacromolecules. 2013-10-29

[9]
Multifunctional nanoparticle-loaded spherical and wormlike micelles formed by interfacial instabilities.

Adv Mater. 2012-4-18

[10]
pH-responsive polymeric micelles self-assembled from benzoic-imine-containing alkyl-modified PEGylated chitosan for delivery of amphiphilic drugs.

Int J Biol Macromol. 2020-11-15

引用本文的文献

[1]
Engineering amphiphilic alkenyl lipids for self-assembly in functional hybrid nanostructures.

Sci Rep. 2024-11-21

本文引用的文献

[1]
Hierarchically Structured Nanocomposites via Mixed-Graft Block Copolymer Templating: Achieving Controlled Nanostructure and Functionality.

J Am Chem Soc. 2024-1-10

[2]
Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications.

Nat Protoc. 2023-3

[3]
Long-circulating magnetoliposomes as surrogates for assessing pancreatic tumour permeability and nanoparticle deposition.

Acta Biomater. 2023-3-1

[4]
Liposomes containing nanoparticles: preparation and applications.

Colloids Surf B Biointerfaces. 2022-10

[5]
Biologically Relevant Micellar Nanocarrier Systems for Drug Encapsulation and Functionalization of Metallic Nanoparticles.

Nanomaterials (Basel). 2022-5-20

[6]
Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation.

Nano Lett. 2021-9-8

[7]
pH-Responsive Amphiphilic Polyether Micelles with Superior Stability for Smart Drug Delivery.

Biomacromolecules. 2021-5-10

[8]
: expanded functionality and new tools for small-angle scattering data analysis.

J Appl Crystallogr. 2021-2-1

[9]
Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.

J Control Release. 2021-4-10

[10]
Hybrid Nanosystems for Biomedical Applications.

ACS Nano. 2021-2-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索