School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
Dept. of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
Acta Biomater. 2023 Mar 1;158:611-624. doi: 10.1016/j.actbio.2022.12.057. Epub 2023 Jan 2.
Nanocarriers are candidates for cancer chemotherapy delivery, with growing numbers of clinically-approved nano-liposomal formulations such as Doxil® and Onivyde® (liposomal doxorubicin and irinotecan) providing proof-of-concept. However, their complex biodistribution and the varying susceptibility of individual patient tumours to nanoparticle deposition remains a clinical challenge. Here we describe the preparation, characterisation, and biological evaluation of phospholipidic structures containing solid magnetic cores (SMLs) as an MRI-trackable surrogate that could aid in the clinical development and deployment of nano-liposomal formulations. Through the sequential assembly of size-defined iron oxide nanoparticle clusters with a stabilizing anionic phospholipid inner monolayer and an outer monolayer of independently-selectable composition, SMLs can mimic physiologically a wide range of nano-liposomal carrier compositions. In patient-derived xenograft models of pancreatic adenocarcinoma, similar tumour deposition of SML and their nano-liposomal counterparts of identical bilayer composition was observed in vivo, both at the tissue level (fluorescence intensities of 1.5 × 10 ± 1.8 × 10 and 1.2 × 10 ± 6.3 × 10, respectively; ns, 99% confidence interval) and non-invasively using MR imaging. We observed superior capabilities of SML as a surrogate for nano-liposomal formulations as compared to other clinically-approved iron oxide nano-formulations (ferumoxytol). In combination with diagnostic and therapeutic imaging tools, SMLs have high clinical translational potential to predict nano-liposomal drug carrier deposition and could assist in stratifying patients into treatment regimens that promote optimal tumour deposition of nanoparticulate chemotherapy carriers. STATEMENT OF SIGNIFICANCE: Solid magnetoliposomes (SMLs) with compositions resembling that of FDA-approved agents such as Doxil® and Onivyde® offer potential application as non-invasive MRI stratification agents to assess extent of tumour deposition of nano-liposomal therapeutics prior to administration. In animals with pancreatic adenocarcinoma (PDAC), SML-PEG exhibited (i) tumour deposition comparable to liposomes of the same composition; (ii) extended circulation times, with continued tumour deposition up to 24 hours post-injection; and (iii) MRI capabilities to determine tumour deposition up to 1 week post-injection, and confirmation of patient-to-patient variation in nanoparticulate deposition in tumours. Hence SMLs with controlled formulation are a step towards non-invasive MRI stratification approaches for patients, enabled by evaluation of the extent of deposition in tumours prior to administration of nano-liposomal therapeutics.
纳米载体是癌症化疗药物输送的候选物,越来越多的临床批准的纳米脂质体制剂,如 Doxil® 和 Onivyde®(脂质体阿霉素和伊立替康)提供了概念验证。然而,它们复杂的生物分布和个体患者肿瘤对纳米颗粒沉积的不同敏感性仍然是一个临床挑战。在这里,我们描述了含有固体磁性核的磷脂结构(SML)的制备、表征和生物学评价,作为一种可用于磁共振成像(MRI)跟踪的替代物,可帮助临床开发和部署纳米脂质体制剂。通过大小定义的氧化铁纳米颗粒簇的顺序组装,具有稳定的阴离子磷脂内层和可独立选择组成的外层单层,可以模拟生理上广泛的纳米脂质体载体组成。在胰腺腺癌患者来源的异种移植模型中,在体内观察到 SML 及其具有相同双层组成的纳米脂质体对应物的类似肿瘤沉积,在组织水平(荧光强度分别为 1.5×10±1.8×10 和 1.2×10±6.3×10;ns,99%置信区间)和使用磁共振成像进行非侵入性观察。与其他临床批准的氧化铁纳米制剂(ferumoxytol)相比,我们观察到 SML 作为纳米脂质体制剂替代物的优越能力。结合诊断和治疗成像工具,SML 具有很高的临床转化潜力,可以预测纳米脂质体药物载体的沉积,并有助于将患者分层为促进纳米颗粒化疗载体在肿瘤中最佳沉积的治疗方案。
具有类似于 FDA 批准药物(如 Doxil®和 Onivyde®)的组成的固体磁脂质体(SML)具有作为非侵入性 MRI 分层剂的潜在应用,可在给予纳米脂质体治疗剂之前评估肿瘤中纳米脂质体治疗剂的沉积程度。在胰腺腺癌(PDAC)动物中,SML-PEG 表现出:(i)与相同组成的脂质体相当的肿瘤沉积;(ii)延长的循环时间,在注射后 24 小时内持续肿瘤沉积;和(iii)MRI 能力,可在注射后 1 周内确定肿瘤沉积,并确认患者之间肿瘤中纳米颗粒沉积的差异。因此,具有受控配方的 SML 是迈向患者非侵入性 MRI 分层方法的一步,通过在给予纳米脂质体治疗剂之前评估肿瘤中的沉积程度来实现。