Istituto Italiano di Tecnologia, Genoa, Italy.
Nat Protoc. 2023 Mar;18(3):783-809. doi: 10.1038/s41596-022-00779-3. Epub 2023 Jan 27.
Magnetic nanoparticles are increasingly used in medical applications, including cancer treatment by magnetic hyperthermia. This protocol describes a solvothermal-based process to prepare, at the gram scale, ferrite nanoparticles with well-defined shape, i.e., nanocubes, nanostars and other faceted nanoparticles, and with fine control of structural/magnetic properties to achieve point-of-reference magnetic hyperthermia performance. This straightforward method comprises simple steps: (i) making a homogeneous alcoholic solution of a surfactant and an alkyl amine; (ii) adding an organometallic metal precursor together with an aldehyde molecule, which acts as the key shape directing agent; and (iii) reacting the mixture in an autoclave for solvothermal crystallization. The shape of the ferrite nanoparticles can be controlled by the structure of the aldehyde ligand. Benzaldehyde and its aromatic derivatives favor the formation of cubic ferrite nanoparticles while aliphatic aldehydes result in spherical nanoparticles. The replacement of the primary amine, used in the nanocubes synthesis, with a secondary/tertiary amine results in nanoparticles with star-like shape. The well-defined control in terms of shape, narrow size distribution (below 5%), compositional tuning and crystallinity guarantees the preparation, at the gram scale, of nanocubes/star-like nanoparticles that possess, under magnetic field conditions of clinical use, specific adsorption rates comparable to or even superior to those obtained through thermal decomposition methods, which are typically prepared at the milligram scale. Here, gram-scale nanoparticle products with benchmark features for magnetic hyperthermia applications can be prepared in ~10 h with an average level of expertise in chemistry.
磁性纳米粒子在医学应用中越来越多地被使用,包括通过磁热疗治疗癌症。本方案描述了一种基于溶剂热的方法,可在克级规模上制备具有良好形状定义的铁氧体纳米粒子,例如纳米立方体、纳米星和其他有面纳米粒子,并可以精细控制结构/磁性,以实现参考点磁热疗性能。这种简单的方法包括简单的步骤:(i)使表面活性剂和烷基胺的醇溶液均匀;(ii)加入有机金属金属前体以及醛分子,醛分子作为关键形状导向剂;(iii)在高压釜中反应混合物进行溶剂热结晶。铁氧体纳米粒子的形状可以通过醛配体的结构来控制。苯甲醛及其芳香衍生物有利于立方铁氧体纳米粒子的形成,而脂肪醛则导致球形纳米粒子的形成。用二级/三级胺代替纳米立方体合成中使用的伯胺,会导致形成具有星状形状的纳米粒子。在形状、窄粒径分布(低于 5%)、组成调谐和结晶度方面的精确控制保证了克级规模的纳米立方体/星状纳米粒子的制备,在临床使用的磁场条件下,特定的吸附率可与甚至优于通过热分解方法制备的纳米粒子,热分解方法通常在毫克级规模制备。在这里,可以在平均化学专业水平下,在约 10 小时内制备具有磁热疗应用基准特征的克级纳米粒子产品。
Mater Sci Eng C Mater Biol Appl. 2016-3-15
J Nanosci Nanotechnol. 2014-1
Nanoscale Adv. 2025-8-5
Chem Mater. 2025-5-20
Nat Rev Bioeng. 2025-3
Micromachines (Basel). 2024-2-24
ACS Appl Nano Mater. 2020-7-24
Nat Rev Immunol. 2020-1-31
ACS Appl Mater Interfaces. 2019-10-31