文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于制备具有基准性能的磁性超顺磁纳米立方体形貌和其他形貌的铁氧体的放大方法及其在磁热疗中的应用。

Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications.

机构信息

Istituto Italiano di Tecnologia, Genoa, Italy.

出版信息

Nat Protoc. 2023 Mar;18(3):783-809. doi: 10.1038/s41596-022-00779-3. Epub 2023 Jan 27.


DOI:10.1038/s41596-022-00779-3
PMID:36707724
Abstract

Magnetic nanoparticles are increasingly used in medical applications, including cancer treatment by magnetic hyperthermia. This protocol describes a solvothermal-based process to prepare, at the gram scale, ferrite nanoparticles with well-defined shape, i.e., nanocubes, nanostars and other faceted nanoparticles, and with fine control of structural/magnetic properties to achieve point-of-reference magnetic hyperthermia performance. This straightforward method comprises simple steps: (i) making a homogeneous alcoholic solution of a surfactant and an alkyl amine; (ii) adding an organometallic metal precursor together with an aldehyde molecule, which acts as the key shape directing agent; and (iii) reacting the mixture in an autoclave for solvothermal crystallization. The shape of the ferrite nanoparticles can be controlled by the structure of the aldehyde ligand. Benzaldehyde and its aromatic derivatives favor the formation of cubic ferrite nanoparticles while aliphatic aldehydes result in spherical nanoparticles. The replacement of the primary amine, used in the nanocubes synthesis, with a secondary/tertiary amine results in nanoparticles with star-like shape. The well-defined control in terms of shape, narrow size distribution (below 5%), compositional tuning and crystallinity guarantees the preparation, at the gram scale, of nanocubes/star-like nanoparticles that possess, under magnetic field conditions of clinical use, specific adsorption rates comparable to or even superior to those obtained through thermal decomposition methods, which are typically prepared at the milligram scale. Here, gram-scale nanoparticle products with benchmark features for magnetic hyperthermia applications can be prepared in ~10 h with an average level of expertise in chemistry.

摘要

磁性纳米粒子在医学应用中越来越多地被使用,包括通过磁热疗治疗癌症。本方案描述了一种基于溶剂热的方法,可在克级规模上制备具有良好形状定义的铁氧体纳米粒子,例如纳米立方体、纳米星和其他有面纳米粒子,并可以精细控制结构/磁性,以实现参考点磁热疗性能。这种简单的方法包括简单的步骤:(i)使表面活性剂和烷基胺的醇溶液均匀;(ii)加入有机金属金属前体以及醛分子,醛分子作为关键形状导向剂;(iii)在高压釜中反应混合物进行溶剂热结晶。铁氧体纳米粒子的形状可以通过醛配体的结构来控制。苯甲醛及其芳香衍生物有利于立方铁氧体纳米粒子的形成,而脂肪醛则导致球形纳米粒子的形成。用二级/三级胺代替纳米立方体合成中使用的伯胺,会导致形成具有星状形状的纳米粒子。在形状、窄粒径分布(低于 5%)、组成调谐和结晶度方面的精确控制保证了克级规模的纳米立方体/星状纳米粒子的制备,在临床使用的磁场条件下,特定的吸附率可与甚至优于通过热分解方法制备的纳米粒子,热分解方法通常在毫克级规模制备。在这里,可以在平均化学专业水平下,在约 10 小时内制备具有磁热疗应用基准特征的克级纳米粒子产品。

相似文献

[1]
Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications.

Nat Protoc. 2023-3

[2]
A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

Mater Sci Eng C Mater Biol Appl. 2016-3-15

[3]
Precise Size Control of the Growth of FeO Nanocubes over a Wide Size Range Using a Rationally Designed One-Pot Synthesis.

ACS Nano. 2019-7-23

[4]
How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.

Nanoscale. 2021-10-1

[5]
Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.

J Nanosci Nanotechnol. 2014-1

[6]
Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications.

Nanoscale. 2021-8-28

[7]
Fe Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment.

Nano Lett. 2018-10-24

[8]
Synthesis, Characterization and Magnetic Hyperthermia of Monodispersed Cobalt Ferrite Nanoparticles for Cancer Therapeutics.

Molecules. 2020-9-27

[9]
Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic effects on cancer cells.

J Colloid Interface Sci. 2022-2

[10]
Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.

Int J Hyperthermia. 2009-8

引用本文的文献

[1]
Proximity effects, exchange bias and magnetic relaxation in γ-FeO nanoparticles.

Nanoscale Adv. 2025-8-5

[2]
Flame-Made Doped Iron Oxide Nanoparticles as Tracers for Magnetic Particle Imaging.

Chem Mater. 2025-5-20

[3]
Imaging-guided precision hyperthermia with magnetic nanoparticles.

Nat Rev Bioeng. 2025-3

[4]
Magnetic nanosheets: from iron oxide nanocubes to polydopamine embedded 2D clusters and their multi-purpose properties.

Nanoscale Horiz. 2025-4-7

[5]
Advances in engineering nanoparticles for magnetic particle imaging (MPI).

Sci Adv. 2025-1-10

[6]
Nanoplatforms for Magnetic-Photo-Heating of Thermo-Resistant Tumor Cells: Singular Synergic Therapeutic Effects at Mild Temperature.

Small. 2024-12

[7]
Ferromagnetic-Antiferromagnetic Coupling in Gas-Phase Synthesized M(Fe, Co, and Ni)-Cr Nanoparticles for Next-Generation Magnetic Applications.

Adv Sci (Weinh). 2024-11

[8]
Pharmaceutical Quality by Design Approach to Develop High-Performance Nanoparticles for Magnetic Hyperthermia.

ACS Nano. 2024-6-11

[9]
Efficient Strategy to Synthesize Tunable pH-Responsive Hybrid Micelles Based on Iron Oxide and Gold Nanoparticles.

Langmuir. 2024-6-4

[10]
Continuum Robots and Magnetic Soft Robots: From Models to Interdisciplinary Challenges for Medical Applications.

Micromachines (Basel). 2024-2-24

本文引用的文献

[1]
Elucidating the Innate Immunological Effects of Mild Magnetic Hyperthermia on U87 Human Glioblastoma Cells: An In Vitro Study.

Pharmaceutics. 2021-10-12

[2]
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.

Chem Soc Rev. 2021-10-18

[3]
Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications.

Nanoscale. 2021-8-28

[4]
Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis.

ACS Appl Nano Mater. 2020-7-24

[5]
One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate.

J Mater Chem B. 2014-7-28

[6]
Enhancing cancer immunotherapy with nanomedicine.

Nat Rev Immunol. 2020-1-31

[7]
Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses.

Chem Mater. 2019-8-13

[8]
Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment.

ACS Appl Mater Interfaces. 2019-10-31

[9]
Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.

Nanoscale. 2019-8-28

[10]
Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with αβ-Integrin-Ligand to Efficiently Induce Intracellular Heat after Alternating Magnetic Field Exposition, Triggering Glioma Cell Death.

ACS Appl Mater Interfaces. 2019-7-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索