Suppr超能文献

中试规模共沉淀法合成用于治疗高磷血症的由超小铁(氢)氧化物纳米颗粒制成的新型活性成分。

Pilot-scale co-precipitation synthesis of a novel active ingredient made of ultrasmall iron (oxyhydr)oxide nanoparticles for the treatment of hyperphosphatemia.

作者信息

Spicher Magdalena Teresa, Schwaminger Sebastian Patrick, von der Haar-Leistl Daniela, Peralta Marian Montiel, Mikacevic Georgina, Wagner Friedrich Ernst, Berensmeier Sonja

机构信息

Fraunhofer Institute for Process Engineering and Packaging (IVV) Giggenhauser Str. 35 85354 Freising Germany

Chair of Bioseparation Engineering, School of Engineering and Design, Technical University of Munich Boltzmannstraße 15 85748 Garching Germany.

出版信息

RSC Adv. 2024 May 20;14(23):16117-16127. doi: 10.1039/d4ra02719a. eCollection 2024 May 15.

Abstract

Due to its simplicity, co-precipitation is the most commonly used method for producing iron (oxyhydr)oxide nanoparticles. However, it is reported to be sensitive to changes in process parameters, which complicates scale-up and is why only volumes up to 1.2 L have been described in the literature. This study aims to demonstrate the scale-up of a co-precipitation synthesis to 100 L using the example of a new phosphate-binding active ingredient based on iron (oxyhydr)oxide. The synthesis was shown to be very robust to changes in synthesis parameters and stirrer geometries. The phosphate-binding efficacy and the yield were maintained in all five scales tested. Only the content of the components in the nanoparticles varied slightly. However, Mössbauer spectroscopy, dynamic light scattering (DLS), and attenuated total reflection Fourier transform infrared spectroscopy (FT-IR) revealed no evidence of structural changes, but a reduction in the size of the iron (oxyhydr)oxide cores and the total core-shell nanoparticle sizes. Overall, this study has successfully demonstrated that ultrasmall iron (oxyhydr)oxide nanoparticles can be produced on a pilot scale by co-precipitation with a yield of >40 g L.

摘要

由于其操作简单,共沉淀法是制备铁(氢氧)氧化物纳米颗粒最常用的方法。然而,据报道,该方法对工艺参数的变化很敏感,这使得放大生产变得复杂,这也是为什么文献中仅描述了高达1.2 L的产量。本研究旨在以一种基于铁(氢氧)氧化物的新型磷酸盐结合活性成分为例,证明共沉淀合成可放大至100 L。结果表明,该合成方法对合成参数和搅拌器几何形状的变化具有很强的鲁棒性。在所有测试的五个规模中,磷酸盐结合效率和产率均得以保持。只是纳米颗粒中各成分的含量略有变化。然而,穆斯堡尔光谱、动态光散射(DLS)和衰减全反射傅里叶变换红外光谱(FT-IR)均未显示出结构变化的迹象,但铁(氢氧)氧化物核的尺寸和核壳纳米颗粒的总尺寸有所减小。总体而言,本研究成功证明了通过共沉淀法可以中试规模生产超小铁(氢氧)氧化物纳米颗粒,产率>40 g/L。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba6/11103348/a13e2d35d0ae/d4ra02719a-f1.jpg

相似文献

2
Characterization of an active ingredient made of nanoscale iron(oxyhydr)oxide for the treatment of hyperphosphatemia.
RSC Adv. 2021 May 14;11(29):17669-17682. doi: 10.1039/d1ra00050k. eCollection 2021 May 13.
3
Interaction and mechanisms in the phosphate-binding of iron(oxyhydr)oxide core-shell nanoparticles.
J Colloid Interface Sci. 2023 Mar 15;634:418-430. doi: 10.1016/j.jcis.2022.12.035. Epub 2022 Dec 10.
4
Spectral and morphological characteristics of synthetic nanophase iron (oxyhydr)oxides.
Phys Chem Miner. 2018 Jan;45(1):1-26. doi: 10.1007/s00269-017-0897-y. Epub 2017 May 19.
6
Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract.
J Biosci Bioeng. 2019 Feb;127(2):241-245. doi: 10.1016/j.jbiosc.2018.07.024. Epub 2018 Oct 20.
7
Potential Use of DMSA-Containing Iron Oxide Nanoparticles as Magnetic Vehicles against the COVID-19 Disease.
ChemistrySelect. 2021 Aug 20;6(31):7931-7935. doi: 10.1002/slct.202101900. Epub 2021 Aug 17.
9
Incorporation of iron (oxyhydr)oxide nanoparticles with expanded graphite for phosphorus removal and recovery from aqueous solutions.
Chemosphere. 2020 Nov;259:127395. doi: 10.1016/j.chemosphere.2020.127395. Epub 2020 Jun 23.
10
Sorption of copper and phosphate to diverse biogenic iron (oxyhydr)oxide deposits.
Sci Total Environ. 2019 Dec 20;697:134111. doi: 10.1016/j.scitotenv.2019.134111. Epub 2019 Aug 26.

本文引用的文献

1
Bioconjugation studies of an EGF-R targeting ligand on dendronized iron oxide nanoparticles to target head and neck cancer cells.
Int J Pharm. 2023 Mar 25;635:122654. doi: 10.1016/j.ijpharm.2023.122654. Epub 2023 Jan 30.
4
Interaction and mechanisms in the phosphate-binding of iron(oxyhydr)oxide core-shell nanoparticles.
J Colloid Interface Sci. 2023 Mar 15;634:418-430. doi: 10.1016/j.jcis.2022.12.035. Epub 2022 Dec 10.
6
Characterization of an active ingredient made of nanoscale iron(oxyhydr)oxide for the treatment of hyperphosphatemia.
RSC Adv. 2021 May 14;11(29):17669-17682. doi: 10.1039/d1ra00050k. eCollection 2021 May 13.
7
8
Co-sorption of metal ions and inorganic anions/organic ligands on environmental minerals: A review.
Sci Total Environ. 2022 Jan 10;803:149918. doi: 10.1016/j.scitotenv.2021.149918. Epub 2021 Aug 26.
9
A Tri-Stimuli Responsive (Maghemite/PLGA)/Chitosan Nanostructure with Promising Applications in Lung Cancer.
Pharmaceutics. 2021 Aug 10;13(8):1232. doi: 10.3390/pharmaceutics13081232.
10
Efficiency of Ampicillin-Associated Biogenic Ferrihydrite Nanoparticles in Combination with a Magnetic Field for Local Treatment of Burns.
Bull Exp Biol Med. 2020 Sep;169(5):683-686. doi: 10.1007/s10517-020-04954-y. Epub 2020 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验