Suppr超能文献

中国肺腺癌中体细胞突变的临床相关性及其对生存预后的影响。

Clinical relevance of somatic mutations in Chinese lung adenocarcinoma and their prognostic implications for survival.

机构信息

Department of Cardiothoracic Surgery, Dianjiang People's Hospital of Chongqing, Chongqing, China.

Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.

出版信息

Cancer Med. 2024 May;13(10):e7227. doi: 10.1002/cam4.7227.

Abstract

BACKGROUND

To comprehensively elucidate the genomic and mutational features of lung cancer cases, and lung adenocarcinoma (LUAD), it is imperative to conduct ongoing investigations into the genomic landscape. In this study, we aim to analyze the somatic mutation profile and assessed the significance of these informative genes utilizing a retrospective LUAD cohort.

METHODS

A total of 247 Chinese samples were analyzed to exhibit the tumor somatic genomic alterations in patients with LUAD. The Cox regression analysis was employed to identify prognosis-related genes and establish a predictive model for stratifying patients with LUAD.

RESULTS

In the Dianjiang People's Hospital (DPH) cohort, the top five frequent mutated genes were (Epidermal growth factor receptor) EGFR (68%), TP53 (30%), RBM10 (13%), LRP1B (9%), and KRAS (9%). Of which, EGFR is a mostly altered driver gene, and most mutation sites are located in tyrosine kinase regions. Oncogene pathway alteration and mutation signature analysis demonstrated the RTK-RAS pathway alteration, and smoking was the main carcinogenic factor of the DPH cohort. Furthermore, we identified 34 driver genes in the DPH cohort, including EGFR (68%), TP53 (30.4%), RBM10 (12.6%), KRAS (8.5%), LRP1B (8.5%), and so on, and 45 Clinical Characteristic-Related Genes (CCRGs) were found to closely related to the clinical high-risk factors. We developed a Multiple Parameter Gene Mutation (MPGM) risk model by integrating critical genes and oncogenic pathway alterations in LUAD patients from the DPH cohort. Based on publicly available LUAD datasets, we identified five genes, including BRCA2, Anaplastic lymphoma kinase (ALK), BRAF, EGFR, and Platelet-Derived Growth Factor Receptor Alpha (PDGFRA), according to the multivariable Cox regression analysis. The MPGM-low group showed significantly better overall survival (OS) compared to the MPGM-high group (p < 0.0001, area under the curve (AUC) = 0.754). The robust performance was validated in 55 LUAD patients from the DPH cohort and another LUAD dataset. Immune characteristics analysis revealed a higher proportion of primarily DCs and mononuclear cells in the MPGM-low risk group, while the MPGM-high risk group showed lower immune cells and higher tumor cell infiltration.

CONCLUSION

This study provides a comprehensive genomic landscape of Chinese LUAD patients and develops an MPGM risk model for LUAD prognosis stratification. Further follow-up will be performed for the patients in the DPH cohort consistently to explore the resistance and prognosis genetic features.

摘要

背景

为了全面阐明肺癌病例的基因组和突变特征,以及肺腺癌 (LUAD),对基因组景观进行持续研究至关重要。在这项研究中,我们旨在分析体细胞突变谱,并利用回顾性 LUAD 队列评估这些信息基因的意义。

方法

分析了 247 例中国样本,以展示 LUAD 患者肿瘤体细胞基因组改变。采用 Cox 回归分析鉴定与预后相关的基因,并建立 LUAD 患者分层的预测模型。

结果

在垫江县人民医院 (DPH) 队列中,最常见的五种突变基因是 (表皮生长因子受体) EGFR(68%)、TP53(30%)、RBM10(13%)、LRP1B(9%)和 KRAS(9%)。其中,EGFR 是一种主要改变的驱动基因,大多数突变位点位于酪氨酸激酶区域。癌基因途径改变和突变特征分析表明 RTK-RAS 途径改变,吸烟是 DPH 队列的主要致癌因素。此外,我们在 DPH 队列中鉴定了 34 个驱动基因,包括 EGFR(68%)、TP53(30.4%)、RBM10(12.6%)、KRAS(8.5%)、LRP1B(8.5%)等,发现 45 个与临床高危因素密切相关的临床特征相关基因 (CCRGs)。我们通过整合 DPH 队列中 LUAD 患者的关键基因和致癌途径改变,开发了一个 LUAD 患者的多参数基因突变 (MPGM) 风险模型。基于公开的 LUAD 数据集,我们根据多变量 Cox 回归分析,鉴定了五个基因,包括 BRCA2、间变性淋巴瘤激酶 (ALK)、BRAF、EGFR 和血小板衍生生长因子受体 α (PDGFRA)。MPGM-低组的总生存期 (OS) 明显优于 MPGM-高组(p<0.0001,曲线下面积 (AUC)=0.754)。在来自 DPH 队列的 55 例 LUAD 患者和另一个 LUAD 数据集的验证中,该模型表现稳健。免疫特征分析显示,MPGM-低风险组中主要树突状细胞和单核细胞的比例较高,而 MPGM-高风险组中免疫细胞较低,肿瘤细胞浸润较高。

结论

本研究提供了中国 LUAD 患者的全面基因组景观,并为 LUAD 预后分层开发了 MPGM 风险模型。我们将持续对 DPH 队列中的患者进行随访,以探索耐药性和预后的遗传特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abd7/11106684/4a34cb38b37e/CAM4-13-e7227-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验