Suppr超能文献

用于跨数据集运动想象 EEG 迁移学习的多源深度域自适应集成框架。

Multi-source deep domain adaptation ensemble framework for cross-dataset motor imagery EEG transfer learning.

机构信息

School of Information Engineering, Huzhou University, Huzhou, People's Republic of China.

Zhejiang Province Key Laboratory of Smart Management & Application of Modern Agricultural Resources, Huzhou University, Huzhou, People's Republic of China.

出版信息

Physiol Meas. 2024 Jun 3;45(5). doi: 10.1088/1361-6579/ad4e95.

Abstract

. Electroencephalography (EEG) is an important kind of bioelectric signal for measuring physiological activities of the brain, and motor imagery (MI) EEG has significant clinical application prospects. Convolutional neural network has become a mainstream algorithm for MI EEG classification, however lack of subject-specific data considerably restricts its decoding accuracy and generalization performance. To address this challenge, a novel transfer learning (TL) framework using auxiliary dataset to improve the MI EEG classification performance of target subject is proposed in this paper.. We developed a multi-source deep domain adaptation ensemble framework (MSDDAEF) for cross-dataset MI EEG decoding. The proposed MSDDAEF comprises three main components: model pre-training, deep domain adaptation, and multi-source ensemble. Moreover, for each component, different designs were examined to verify the robustness of MSDDAEF.. Bidirectional validation experiments were performed on two large public MI EEG datasets (openBMI and GIST). The highest average classification accuracy of MSDDAEF reaches 74.28% when openBMI serves as target dataset and GIST serves as source dataset. While the highest average classification accuracy of MSDDAEF is 69.85% when GIST serves as target dataset and openBMI serves as source dataset. In addition, the classification performance of MSDDAEF surpasses several well-established studies and state-of-the-art algorithms.. The results of this study show that cross-dataset TL is feasible for left/right-hand MI EEG decoding, and further indicate that MSDDAEF is a promising solution for addressing MI EEG cross-dataset variability.

摘要

. 脑电图(EEG)是测量大脑生理活动的一种重要生物电信号,运动想象(MI)EEG 具有重要的临床应用前景。卷积神经网络已成为 MI EEG 分类的主流算法,然而,缺乏特定于主题的数据极大地限制了其解码准确性和泛化性能。为了解决这个挑战,本文提出了一种使用辅助数据集提高目标主题 MI EEG 分类性能的新型迁移学习(TL)框架。. 我们开发了一种用于跨数据集 MI EEG 解码的多源深度域自适应集成框架(MSDDAEF)。所提出的 MSDDAEF 包括三个主要组件:模型预训练、深度域自适应和多源集成。此外,对于每个组件,都进行了不同的设计检查,以验证 MSDDAEF 的稳健性。. 在两个大型公共 MI EEG 数据集(openBMI 和 GIST)上进行了双向验证实验。当 openBMI 作为目标数据集,GIST 作为源数据集时,MSDDAEF 的最高平均分类准确率达到 74.28%。而当 GIST 作为目标数据集,openBMI 作为源数据集时,MSDDAEF 的最高平均分类准确率为 69.85%。此外,MSDDAEF 的分类性能超过了几个成熟的研究和最先进的算法。. 本研究结果表明,跨数据集 TL 可用于左手/右手 MI EEG 解码,进一步表明 MSDDAEF 是解决 MI EEG 跨数据集变异性的一种有前途的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验