Suppr超能文献

基于深度卷积神经网络的 EEG 运动想象分类自适应迁移学习。

Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network.

机构信息

School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Department of Artificial Intelligence, Korea University, Seoul 02841, South Korea.

出版信息

Neural Netw. 2021 Apr;136:1-10. doi: 10.1016/j.neunet.2020.12.013. Epub 2020 Dec 23.

Abstract

In recent years, deep learning has emerged as a powerful tool for developing Brain-Computer Interface (BCI) systems. However, for deep learning models trained entirely on the data from a specific individual, the performance increase has only been marginal owing to the limited availability of subject-specific data. To overcome this, many transfer-based approaches have been proposed, in which deep networks are trained using pre-existing data from other subjects and evaluated on new target subjects. This mode of transfer learning however faces the challenge of substantial inter-subject variability in brain data. Addressing this, in this paper, we propose 5 schemes for adaptation of a deep convolutional neural network (CNN) based electroencephalography (EEG)-BCI system for decoding hand motor imagery (MI). Each scheme fine-tunes an extensively trained, pre-trained model and adapt it to enhance the evaluation performance on a target subject. We report the highest subject-independent performance with an average (N=54) accuracy of 84.19% (±9.98%) for two-class motor imagery, while the best accuracy on this dataset is 74.15% (±15.83%) in the literature. Further, we obtain a statistically significant improvement (p=0.005) in classification using the proposed adaptation schemes compared to the baseline subject-independent model.

摘要

近年来,深度学习已成为开发脑机接口(BCI)系统的强大工具。然而,对于完全基于特定个体数据进行训练的深度学习模型,由于可用的特定个体数据有限,其性能提升仅略有增加。为了克服这一问题,已经提出了许多基于迁移的方法,其中使用来自其他主体的预存在数据来训练深度网络,并在新的目标主体上进行评估。然而,这种迁移学习模式面临着大脑数据中存在大量主体间可变性的挑战。针对这一问题,在本文中,我们提出了 5 种基于深度卷积神经网络(CNN)的脑电(EEG)-BCI 系统的适应方案,用于解码手运动想象(MI)。每个方案都对经过广泛训练的预训练模型进行微调,并对其进行适应,以提高在目标主体上的评估性能。我们报告了最高的独立于主体的性能,对于两个类别的运动想象,平均准确率为 84.19%(±9.98%)(N=54),而文献中该数据集的最佳准确率为 74.15%(±15.83%)。此外,与独立于主体的基线模型相比,我们使用提出的适应方案在分类方面获得了统计学上显著的提高(p=0.005)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验