Suppr超能文献

利用壳聚糖基基因传感器和电子舌检测金黄色葡萄球菌的多维校准空间。

Multidimensional calibration spaces in Staphylococcus Aureus detection using chitosan-based genosensors and electronic tongue.

机构信息

Embrapa Instrumentação, Nanotechnology National Laboratory for Agriculture (LNNA), São Carlos, Brazil.

São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13566-590 São Carlos, Brazil.

出版信息

Int J Biol Macromol. 2024 Jun;271(Pt 1):132460. doi: 10.1016/j.ijbiomac.2024.132460. Epub 2024 May 19.

Abstract

Mastitis diagnosis can be made by detecting Staphylococcus aureus (S. aureus), which requires high sensitivity and selectivity. Here, we report on microfluidic genosensors and electronic tongues to detect S. aureus DNA using impedance spectroscopy with data analysis employing visual analytics and machine learning techniques. The genosensors were made with layer-by-layer films containing either 10 bilayers of chitosan/chondroitin sulfate or 8 bilayers of chitosan/sericin functionalized with an active layer of cpDNA S. aureus. The specific interactions leading to hybridization in these genosensors allowed for a low limit of detection of 5.90 × 10 mol/L. The electronic tongue had four sensing units made with 6-bilayer chitosan/chondroitin sulfate films, 10-bilayer chitosan/chondroitin sulfate, 8-bilayer chitosan/sericin, and 8-bilayer chitosan/gold nanoparticles modified with sericin. Despite the absence of specific interactions, various concentrations of DNA S. aureus could be distinguished when the impedance data were plotted using a dimensionality reduction technique. Selectivity of S. aureus DNA was confirmed using multidimensional calibration spaces, based on machine learning, with accuracy up to 89 % for the genosensors and 66 % for the electronic tongue. Hence, with these computational methods one may opt for the more expensive genosensors or the simpler and cheaper electronic tongue, depending on the sensitivity level required to diagnose mastitis.

摘要

乳腺炎的诊断可以通过检测金黄色葡萄球菌(S. aureus)来实现,这需要高灵敏度和选择性。在这里,我们报告了使用阻抗谱的微流控基因传感器和电子舌来检测金黄色葡萄球菌 DNA 的方法,数据分析采用了可视化分析和机器学习技术。基因传感器是通过含有 10 个或 8 个壳聚糖/硫酸软骨素或壳聚糖/丝胶层,并用金黄色葡萄球菌 cpDNA 功能化的活性层制成的层层膜制成的。这些基因传感器中的特异性相互作用导致杂交,从而实现了低至 5.90×10 -6 mol/L 的检测限。电子舌有四个传感单元,由 6 个双层壳聚糖/硫酸软骨素膜、10 个双层壳聚糖/硫酸软骨素、8 个双层壳聚糖/丝胶和 8 个双层壳聚糖/丝胶修饰的金纳米粒子组成。尽管没有特异性相互作用,但当使用降维技术绘制阻抗数据时,可以区分不同浓度的金黄色葡萄球菌 DNA。使用基于机器学习的多维校准空间来确认金黄色葡萄球菌 DNA 的选择性,基因传感器的准确性高达 89%,电子舌的准确性高达 66%。因此,根据诊断乳腺炎所需的灵敏度水平,可以选择更昂贵的基因传感器或更简单、更便宜的电子舌。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验