Antimicrobial Peptides, Biofunctional Probiotics and Peptidomics Laboratory, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India.
Biofunctional Peptidomics and Metabolic Syndrome Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India.
Braz J Microbiol. 2024 Sep;55(3):2293-2312. doi: 10.1007/s42770-024-01347-5. Epub 2024 May 22.
Antibiotic-resistant bacteria causing nosocomial infections pose a significant global health concern. This study focused on examining the lipid profiles of both non-resistant and clinically resistant strains of Staphylococcus aureus (MRSA 1418), E. coli (ESBL 1384), and Acinetobacter 1379. The main aim was to investigate the relationship between lipid profiles, hydrophobicity, and antibiotic resistance so as to identify the pathogenic potential and resistance factors of strains isolated from patients with sepsis and urinary tract infections (UTIs). The research included various tests, such as antimicrobial susceptibility assays following CLSI guidelines, biochemical tests, biofilm assays, and hydrophobicity assays. Additionally, gas chromatography mass spectrometry (GC-MS) and GC-Flame Ionization Detector (GC-FID) analysis were used for lipid profiling and composition. The clinically isolated resistant strains (MRSA-1418, ESBL-1384, and Acinetobacter 1379) demonstrated resistance phenotypes of 81.80%, 27.6%, and 63.6%, respectively, with a multiple antibiotic resistance index of 0.81, 0.27, and 0.63. Notably, the MRSA-1418 strain, which exhibited resistance, showed significantly higher levels of hemolysin, cell surface hydrophobicity, biofilm index, and a self-aggregative phenotype compared to the non-resistant strains. Gene expression analysis using quantitative real-time PCR (qPCR). Indicated elevated expression levels of intercellular adhesion biofilm-related genes (icaA, icaC, and icaD) in MRSA-1418 (pgaA, pgaC, and pgaB) and Acinetobacter 1379 after 24 h compared to non-resistant strains. Scanning electron microscopy (SEM) was employed for structural investigation. These findings provide valuable insights into the role of biofilms in antibiotic resistance and suggest potential target pathways for combating antibiotic-resistant bacteria.
耐抗生素的细菌引起的医院感染是一个严重的全球健康问题。本研究专注于研究非耐药和临床耐药金黄色葡萄球菌(MRSA 1418)、大肠杆菌(ESBL 1384)和不动杆菌 1379 的脂质谱。主要目的是研究脂质谱、疏水性和抗生素耐药性之间的关系,以确定从败血症和尿路感染(UTI)患者分离的菌株的致病潜力和耐药因素。研究包括各种测试,如按照 CLSI 指南进行的抗菌药敏试验、生化试验、生物膜试验和疏水性试验。此外,还使用气相色谱质谱联用仪(GC-MS)和气相色谱-火焰离子化检测器(GC-FID)进行脂质谱分析和组成分析。临床分离的耐药株(MRSA-1418、ESBL-1384 和 Acinetobacter 1379)表现出 81.80%、27.6%和 63.6%的耐药表型,多重抗生素耐药指数分别为 0.81、0.27 和 0.63。值得注意的是,表现出耐药性的 MRSA-1418 菌株与非耐药菌株相比,溶血素、细胞表面疏水性、生物膜指数和自聚集表型显著升高。使用定量实时 PCR(qPCR)进行基因表达分析。结果表明,与非耐药菌株相比,MRSA-1418(pgaA、pgaC 和 pgaB)和 Acinetobacter 1379 在 24 小时后,细胞间粘附生物膜相关基因(icaA、icaC 和 icaD)的表达水平显著升高。扫描电子显微镜(SEM)用于结构研究。这些发现为生物膜在抗生素耐药性中的作用提供了有价值的见解,并为对抗抗生素耐药菌提供了潜在的靶向途径。