Nian Qingshun, Luo Xuan, Ruan Digen, Li Yecheng, Xiong Bing-Qing, Cui Zhuangzhuang, Wang Zihong, Dong Qi, Fan Jiajia, Jiang Jinyu, Ma Jun, Ma Zhihao, Wang Dazhuang, Ren Xiaodi
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Nat Commun. 2024 May 21;15(1):4303. doi: 10.1038/s41467-024-48444-5.
Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing HO reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI anions at the Zn|electrolyte interface creates an HO-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnVO full cells exhibit a high capacity retention of 76.8% after 2000 cycles.
不可控的锌(Zn)电镀和析氢极大地破坏了锌阳极的可逆性。以往的电解质设计侧重于抑制HO反应性,然而,在电池长期储存老化和循环过程中碱性副产物的积累仍然会使电池性能恶化。在此,我们提出了一种直接的策略,使用强布朗斯特酸双(三氟甲磺酰)亚胺(HTFSI)作为电解质添加剂来解决此类问题。这种方法重新调整了两个电极上的电池界面化学,抑制了连续的腐蚀反应,并促进了锌的均匀沉积。疏水性TFSI阴离子在Zn|电解质界面的富集创造了一个缺乏HO的微环境,从而抑制了锌的腐蚀反应并诱导形成富含ZnS的界面相。这种高酸性电解质在1 mA cm时表现出高达99.7%的高锌电镀/剥离库仑效率(在更高的电流密度和面积容量下>99.8%)。此外,Zn||ZnVO全电池在2000次循环后表现出76.8%的高容量保持率。