Van Andel Institute, Grand Rapids, MI, USA.
Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
Nat Struct Mol Biol. 2024 Oct;31(10):1509-1521. doi: 10.1038/s41594-024-01316-4. Epub 2024 May 21.
Channel enzymes represent a class of ion channels with enzymatic activity directly or indirectly linked to their channel function. We investigated a TRPM2 chanzyme from choanoflagellates that integrates two seemingly incompatible functions into a single peptide: a channel module activated by ADP-ribose with high open probability and an enzyme module (NUDT9-H domain) consuming ADP-ribose at a remarkably slow rate. Using time-resolved cryogenic-electron microscopy, we captured a complete series of structural snapshots of gating and catalytic cycles, revealing the coupling mechanism between channel gating and enzymatic activity. The slow kinetics of the NUDT9-H enzyme module confers a self-regulatory mechanism: ADPR binding triggers NUDT9-H tetramerization, promoting channel opening, while subsequent hydrolysis reduces local ADPR, inducing channel closure. We further demonstrated how the NUDT9-H domain has evolved from a structurally semi-independent ADP-ribose hydrolase module in early species to a fully integrated component of a gating ring essential for channel activation in advanced species.
通道酶代表一类具有酶活性的离子通道,其酶活性直接或间接地与其通道功能相关联。我们研究了一种来自领鞭毛生物的 TRPM2 通道酶,它将两个看似不兼容的功能整合到一个单一的肽中:一个由 ADP-核糖激活的通道模块,具有高开放概率,一个酶模块(NUDT9-H 结构域)以极慢的速度消耗 ADP-核糖。使用时间分辨低温电子显微镜,我们捕获了门控和催化循环的完整系列结构快照,揭示了通道门控和酶活性之间的偶联机制。NUDT9-H 酶模块的缓慢动力学赋予了一种自我调节机制:ADPR 结合触发 NUDT9-H 四聚化,促进通道打开,而随后的水解降低局部 ADPR,诱导通道关闭。我们进一步证明了 NUDT9-H 结构域如何从早期物种中结构上半独立的 ADP-核糖水解酶模块进化为对通道激活至关重要的门控环的完全整合组件。