Fliegert Ralf, Watt Joanna M, Schöbel Anja, Rozewitz Monika D, Moreau Christelle, Kirchberger Tanja, Thomas Mark P, Sick Wiebke, Araujo Andrea C, Harneit Angelika, Potter Barry V L, Guse Andreas H
The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K.
Biochem J. 2017 Jun 16;474(13):2159-2175. doi: 10.1042/BCJ20170091.
TRPM2 (transient receptor potential channel, subfamily melastatin, member 2) is a Ca-permeable non-selective cation channel activated by the binding of adenosine 5'-diphosphoribose (ADPR) to its cytoplasmic NUDT9H domain (NUDT9 homology domain). Activation of TRPM2 by ADPR downstream of oxidative stress has been implicated in the pathogenesis of many human diseases, rendering TRPM2 an attractive novel target for pharmacological intervention. However, the structural basis underlying this activation is largely unknown. Since ADP (adenosine 5'-diphosphate) alone did not activate or antagonize the channel, we used a chemical biology approach employing synthetic analogues to focus on the role of the ADPR terminal ribose. All novel ADPR derivatives modified in the terminal ribose, including that with the seemingly minor change of methylating the anomeric-OH, abolished agonist activity at TRPM2. Antagonist activity improved as the terminal substituent increasingly resembled the natural ribose, indicating that gating by ADPR might require specific interactions between hydroxyl groups of the terminal ribose and the NUDT9H domain. By mutating amino acid residues of the NUDT9H domain, predicted by modelling and docking to interact with the terminal ribose, we demonstrate that abrogating hydrogen bonding of the amino acids Arg1433 and Tyr1349 interferes with activation of the channel by ADPR. Taken together, using the complementary experimental approaches of chemical modification of the ligand and site-directed mutagenesis of TRPM2, we demonstrate that channel activation critically depends on hydrogen bonding of Arg1433 and Tyr1349 with the terminal ribose. Our findings allow for a more rational design of novel TRPM2 antagonists that may ultimately lead to compounds of therapeutic potential.
瞬时受体电位阳离子通道亚家族M成员2(TRPM2)是一种钙离子通透的非选择性阳离子通道,由腺苷5'-二磷酸核糖(ADPR)与其胞质NUDT9H结构域(NUDT9同源结构域)结合激活。氧化应激下游的ADPR对TRPM2的激活与许多人类疾病的发病机制有关,这使得TRPM2成为一个有吸引力的新型药物干预靶点。然而,这种激活背后的结构基础在很大程度上尚不清楚。由于单独的ADP(腺苷5'-二磷酸)不会激活或拮抗该通道,我们采用化学生物学方法,利用合成类似物来聚焦ADPR末端核糖的作用。所有在末端核糖上修饰的新型ADPR衍生物,包括仅对异头羟基进行甲基化这一看似微小变化的衍生物,均消除了对TRPM2的激动剂活性。拮抗剂活性随着末端取代基越来越类似于天然核糖而提高,这表明ADPR介导的门控可能需要末端核糖的羟基与NUDT9H结构域之间的特定相互作用。通过对NUDT9H结构域中经建模和对接预测与末端核糖相互作用的氨基酸残基进行突变,我们证明,消除精氨酸1433和酪氨酸1349的氢键会干扰ADPR对通道的激活。综上所述,通过对配体进行化学修饰和对TRPM2进行定点诱变这两种互补的实验方法,我们证明通道激活关键取决于精氨酸1433和酪氨酸1349与末端核糖的氢键作用。我们的研究结果有助于更合理地设计新型TRPM2拮抗剂,最终可能会研发出具有治疗潜力的化合物。