Suppr超能文献

一种空间结构嵌入 HLA 特征,用于预测肾细胞癌免疫治疗的临床反应。

A spatial architecture-embedding HLA signature to predict clinical response to immunotherapy in renal cell carcinoma.

机构信息

Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium.

Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.

出版信息

Nat Med. 2024 Jun;30(6):1667-1679. doi: 10.1038/s41591-024-02978-9. Epub 2024 May 21.

Abstract

An important challenge in the real-world management of patients with advanced clear-cell renal cell carcinoma (aRCC) is determining who might benefit from immune checkpoint blockade (ICB). Here we performed a comprehensive multiomics mapping of aRCC in the context of ICB treatment, involving discovery analyses in a real-world data cohort followed by validation in independent cohorts. We cross-connected bulk-tumor transcriptomes across >1,000 patients with validations at single-cell and spatial resolutions, revealing a patient-specific crosstalk between proinflammatory tumor-associated macrophages and (pre-)exhausted CD8 T cells that was distinguished by a human leukocyte antigen repertoire with higher preference for tumoral neoantigens. A cross-omics machine learning pipeline helped derive a new tumor transcriptomic footprint of neoantigen-favoring human leukocyte antigen alleles. This machine learning signature correlated with positive outcome following ICB treatment in both real-world data and independent clinical cohorts. In experiments using the RENCA-tumor mouse model, CD40 agonism combined with PD1 blockade potentiated both proinflammatory tumor-associated macrophages and CD8 T cells, thereby achieving maximal antitumor efficacy relative to other tested regimens. Thus, we present a new multiomics and spatial map of the immune-community architecture that drives ICB response in patients with aRCC.

摘要

在晚期透明细胞肾细胞癌 (aRCC) 患者的实际治疗中,一个重要的挑战是确定哪些患者可能受益于免疫检查点阻断 (ICB)。在这里,我们在 ICB 治疗背景下对 aRCC 进行了全面的多组学图谱绘制,涉及真实世界数据队列中的发现性分析,随后在独立队列中进行验证。我们将超过 1000 名患者的肿瘤转录组进行了关联,在单细胞和空间分辨率上进行了验证,揭示了肿瘤相关巨噬细胞和(前)耗竭 CD8 T 细胞之间的患者特异性串扰,其特征是人类白细胞抗原(HLA)谱具有更高的肿瘤新生抗原偏好。一种跨组学机器学习管道有助于得出有利于新抗原的 HLA 等位基因的新肿瘤转录组特征。该机器学习特征与真实世界数据和独立临床队列中 ICB 治疗后的阳性结果相关。在 RENCA 肿瘤小鼠模型实验中,CD40 激动剂联合 PD1 阻断增强了促炎肿瘤相关巨噬细胞和 CD8 T 细胞,从而相对于其他测试方案实现了最大的抗肿瘤疗效。因此,我们提出了一个新的免疫社区结构的多组学和空间图谱,该图谱驱动了 aRCC 患者的 ICB 反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验