Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium.
Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
Nat Med. 2024 Jun;30(6):1667-1679. doi: 10.1038/s41591-024-02978-9. Epub 2024 May 21.
An important challenge in the real-world management of patients with advanced clear-cell renal cell carcinoma (aRCC) is determining who might benefit from immune checkpoint blockade (ICB). Here we performed a comprehensive multiomics mapping of aRCC in the context of ICB treatment, involving discovery analyses in a real-world data cohort followed by validation in independent cohorts. We cross-connected bulk-tumor transcriptomes across >1,000 patients with validations at single-cell and spatial resolutions, revealing a patient-specific crosstalk between proinflammatory tumor-associated macrophages and (pre-)exhausted CD8 T cells that was distinguished by a human leukocyte antigen repertoire with higher preference for tumoral neoantigens. A cross-omics machine learning pipeline helped derive a new tumor transcriptomic footprint of neoantigen-favoring human leukocyte antigen alleles. This machine learning signature correlated with positive outcome following ICB treatment in both real-world data and independent clinical cohorts. In experiments using the RENCA-tumor mouse model, CD40 agonism combined with PD1 blockade potentiated both proinflammatory tumor-associated macrophages and CD8 T cells, thereby achieving maximal antitumor efficacy relative to other tested regimens. Thus, we present a new multiomics and spatial map of the immune-community architecture that drives ICB response in patients with aRCC.
在晚期透明细胞肾细胞癌 (aRCC) 患者的实际治疗中,一个重要的挑战是确定哪些患者可能受益于免疫检查点阻断 (ICB)。在这里,我们在 ICB 治疗背景下对 aRCC 进行了全面的多组学图谱绘制,涉及真实世界数据队列中的发现性分析,随后在独立队列中进行验证。我们将超过 1000 名患者的肿瘤转录组进行了关联,在单细胞和空间分辨率上进行了验证,揭示了肿瘤相关巨噬细胞和(前)耗竭 CD8 T 细胞之间的患者特异性串扰,其特征是人类白细胞抗原(HLA)谱具有更高的肿瘤新生抗原偏好。一种跨组学机器学习管道有助于得出有利于新抗原的 HLA 等位基因的新肿瘤转录组特征。该机器学习特征与真实世界数据和独立临床队列中 ICB 治疗后的阳性结果相关。在 RENCA 肿瘤小鼠模型实验中,CD40 激动剂联合 PD1 阻断增强了促炎肿瘤相关巨噬细胞和 CD8 T 细胞,从而相对于其他测试方案实现了最大的抗肿瘤疗效。因此,我们提出了一个新的免疫社区结构的多组学和空间图谱,该图谱驱动了 aRCC 患者的 ICB 反应。