Monaco Francesco, Vignapiano Annarita, Piacente Martina, Farina Federica, Pagano Claudio, Marenna Alessandra, Leo Stefano, Vecchi Corrado, Mancuso Carlo, Prisco Vincenzo, Iodice Davide, Auricchio Annarosaria, Cavaliere Roberto, D'Agosto Amelia, Fornaro Michele, Solmi Marco, Corrivetti Giulio, Fasano Alessio
Department of Mental Health, ASL Salerno, Salerno, Italy.
European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy.
Front Artif Intell. 2024 May 7;7:1366055. doi: 10.3389/frai.2024.1366055. eCollection 2024.
Major Depressive Disorder (MDD) is a prevalent mental health condition characterized by persistent low mood, cognitive and physical symptoms, anhedonia (loss of interest in activities), and suicidal ideation. The World Health Organization (WHO) predicts depression will become the leading cause of disability by 2030. While biological markers remain essential for understanding MDD's pathophysiology, recent advancements in social signal processing and environmental monitoring hold promise. Wearable technologies, including smartwatches and air purifiers with environmental sensors, can generate valuable digital biomarkers for depression assessment in real-world settings. Integrating these with existing physical, psychopathological, and other indices (autoimmune, inflammatory, neuroradiological) has the potential to improve MDD recurrence prevention strategies.
This prospective, randomized, interventional, and non-pharmacological integrated study aims to evaluate digital and environmental biomarkers in adolescents and young adults diagnosed with MDD who are currently taking medication. The study implements a sensor-integrated platform built around an open-source "Pothos" air purifier system. This platform is designed for scalability and integration with third-party devices. It accomplishes this through software interfaces, a dedicated app, sensor signal pre-processing, and an embedded deep learning AI system. The study will enroll two experimental groups (10 adolescents and 30 young adults each). Within each group, participants will be randomly allocated to Group A or Group B. Only Group B will receive the technological equipment (Pothos system and smartwatch) for collecting digital biomarkers. Blood and saliva samples will be collected at baseline (T0) and endpoint (T1) to assess inflammatory markers and cortisol levels.
Following initial age-based stratification, the sample will undergo detailed classification at the 6-month follow-up based on remission status. Digital and environmental biomarker data will be analyzed to explore intricate relationships between these markers, depression symptoms, disease progression, and early signs of illness.
This study seeks to validate an AI tool for enhancing early MDD clinical management, implement an AI solution for continuous data processing, and establish an AI infrastructure for managing healthcare Big Data. Integrating innovative psychophysical assessment tools into clinical practice holds significant promise for improving diagnostic accuracy and developing more specific digital devices for comprehensive mental health evaluation.
重度抑郁症(MDD)是一种常见的心理健康状况,其特征为持续的情绪低落、认知和身体症状、快感缺失(对活动失去兴趣)以及自杀意念。世界卫生组织(WHO)预测,到2030年抑郁症将成为导致残疾的主要原因。虽然生物标志物对于理解MDD的病理生理学仍然至关重要,但社会信号处理和环境监测方面的最新进展带来了希望。可穿戴技术,包括带有环境传感器的智能手表和空气净化器,能够在现实环境中为抑郁症评估生成有价值的数字生物标志物。将这些与现有的身体、精神病理学和其他指标(自身免疫、炎症、神经放射学)相结合,有可能改进MDD复发预防策略。
这项前瞻性、随机、干预性和非药物综合研究旨在评估目前正在服药的被诊断为MDD的青少年和年轻人中的数字和环境生物标志物。该研究实施了一个围绕开源“Pothos”空气净化器系统构建的传感器集成平台。这个平台专为可扩展性以及与第三方设备集成而设计。它通过软件接口、专用应用程序、传感器信号预处理和嵌入式深度学习人工智能系统来实现这一点。该研究将招募两个实验组(每组10名青少年和30名年轻人)。在每组中,参与者将被随机分配到A组或B组。只有B组将获得用于收集数字生物标志物的技术设备(Pothos系统和智能手表)。将在基线(T0)和终点(T1)采集血液和唾液样本,以评估炎症标志物和皮质醇水平。
在最初基于年龄的分层之后,样本将在6个月随访时根据缓解状态进行详细分类。将分析数字和环境生物标志物数据,以探索这些标志物、抑郁症状、疾病进展和疾病早期迹象之间的复杂关系。
本研究旨在验证一种用于加强MDD早期临床管理的人工智能工具,实施一种用于持续数据处理的人工智能解决方案,并建立一个用于管理医疗大数据的人工智能基础设施。将创新的心理物理评估工具整合到临床实践中,对于提高诊断准确性以及开发更具特异性的数字设备以进行全面的心理健康评估具有重大前景。