Suppr超能文献

机器学习和深度学习方法在心理健康诊断中的综述

A Review of Machine Learning and Deep Learning Approaches on Mental Health Diagnosis.

作者信息

Iyortsuun Ngumimi Karen, Kim Soo-Hyung, Jhon Min, Yang Hyung-Jeong, Pant Sudarshan

机构信息

Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Republic of Korea.

Department of Psychiatry, Chonnam National University Hwasun Hospital, Gwangju 58128, Republic of Korea.

出版信息

Healthcare (Basel). 2023 Jan 17;11(3):285. doi: 10.3390/healthcare11030285.

Abstract

Combating mental illnesses such as depression and anxiety has become a global concern. As a result of the necessity for finding effective ways to battle these problems, machine learning approaches have been included in healthcare systems for the diagnosis and probable prediction of the treatment outcomes of mental health conditions. With the growing interest in machine and deep learning methods, analysis of existing work to guide future research directions is necessary. In this study, 33 articles on the diagnosis of schizophrenia, depression, anxiety, bipolar disorder, post-traumatic stress disorder (PTSD), anorexia nervosa, and attention deficit hyperactivity disorder (ADHD) were retrieved from various search databases using the preferred reporting items for systematic reviews and meta-analysis (PRISMA) review methodology. These publications were chosen based on their use of machine learning and deep learning technologies, individually assessed, and their recommended methodologies were then classified into the various disorders included in this study. In addition, the difficulties encountered by the researchers are discussed, and a list of some public datasets is provided.

摘要

对抗抑郁症和焦虑症等精神疾病已成为全球关注的问题。由于需要找到有效的方法来应对这些问题,机器学习方法已被纳入医疗保健系统,用于精神健康状况的诊断和治疗结果的可能预测。随着人们对机器学习和深度学习方法的兴趣日益浓厚,有必要对现有工作进行分析,以指导未来的研究方向。在本研究中,使用系统评价和荟萃分析的首选报告项目(PRISMA)检索方法,从各种搜索数据库中检索了33篇关于精神分裂症、抑郁症、焦虑症、双相情感障碍、创伤后应激障碍(PTSD)、神经性厌食症和注意力缺陷多动障碍(ADHD)诊断的文章。这些出版物是根据它们对机器学习和深度学习技术的使用情况挑选出来的,进行了单独评估,然后将其推荐的方法归类为本研究中包括的各种疾病。此外,还讨论了研究人员遇到的困难,并提供了一些公共数据集的列表。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f73/9914523/e229f60aaa98/healthcare-11-00285-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验