Suppr超能文献

具有不等式路径约束保证可行性的模型预测控制

Model Predictive Control With Guaranteed Feasibility of Inequality Path Constraints.

作者信息

Fu Jun, Liu Yanhui, Findeisen Rolf, Chai Tianyou

出版信息

IEEE Trans Cybern. 2024 Dec;54(12):7767-7779. doi: 10.1109/TCYB.2024.3394451. Epub 2024 Nov 27.

Abstract

This article concerns nonlinear model predictive control (MPC) with guaranteed feasibility of inequality path constraints (PCs). For MPC with PCs, the existing methods, such as direct multiple shooting, cannot guarantee feasibility of PCs because the PCs are enforced at finitely many time points only. Therefore, this article presents a novel MPC framework that is capable of not only achieving stability control but also guaranteeing feasibility of PCs during the rolling optimization stages of MPC. Under the above MPC framework, an algorithm is first proposed by applying the semi-infinite programming technique to the rolling optimization of MPC. However, it takes heavy computational time to achieve guaranteed feasibility of PCs. Therefore, to guarantee feasibility of PCs meanwhile effectively reducing the computation burden of the closed-loop system, an event-triggered sampling mechanism is constructed in the above path-constrained MPC algorithm. Moreover, sufficient conditions are given for asymptotic convergence of the closed-loop systems. Finally, the effectiveness of the proposed results is illustrated via a cart-damper-spring system.

摘要

本文关注具有不等式路径约束(PCs)保证可行性的非线性模型预测控制(MPC)。对于具有PCs的MPC,现有的方法,如直接多步射击法,不能保证PCs的可行性,因为PCs仅在有限多个时间点上强制执行。因此,本文提出了一种新颖的MPC框架,该框架不仅能够实现稳定控制,而且能够在MPC的滚动优化阶段保证PCs的可行性。在上述MPC框架下,首先通过将半无限规划技术应用于MPC的滚动优化提出了一种算法。然而,要实现PCs的保证可行性需要大量的计算时间。因此,为了保证PCs的可行性,同时有效减轻闭环系统的计算负担,在上述路径约束MPC算法中构建了一种事件触发采样机制。此外,还给出了闭环系统渐近收敛的充分条件。最后,通过一个小车 - 阻尼器 - 弹簧系统说明了所提结果的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验