IEEE J Biomed Health Inform. 2024 Aug;28(8):4636-4647. doi: 10.1109/JBHI.2024.3404225. Epub 2024 Aug 6.
One challenge of chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is the long scan time due to multiple acquisitions of images at different saturation frequency offsets. k-space under-sampling strategy is commonly used to accelerate MRI acquisition, while this could introduce artifacts and reduce signal-to-noise ratio (SNR). To accelerate CEST-MRI acquisition while maintaining suitable image quality, we proposed an attention-based multioffset deep learning reconstruction network (AMO-CEST) with a multiple radial k-space sampling strategy for CEST-MRI. The AMO-CEST also contains dilated convolution to enlarge the receptive field and data consistency module to preserve the sampled k-space data. We evaluated the proposed method on a mouse brain dataset containing 5760 CEST images acquired at a pre-clinical 3 T MRI scanner. Quantitative results demonstrated that AMO-CEST showed obvious improvement over zero-filling method with a PSNR enhancement of 11 dB, a SSIM enhancement of 0.15, and a NMSE decrease of [Formula: see text] in three acquisition orientations. Compared with other deep learning-based models, AMO-CEST showed visual and quantitative improvements in images from three different orientations. We also extracted molecular contrast maps, including the amide proton transfer (APT) and the relayed nuclear Overhauser enhancement (rNOE). The results demonstrated that the CEST contrast maps derived from the CEST images of AMO-CEST were comparable to those derived from the original high-resolution CEST images. The proposed AMO-CEST can efficiently reconstruct high-quality CEST images from under-sampled k-space data and thus has the potential to accelerate CEST-MRI acquisition.
化学交换饱和传递(CEST)磁共振成像(MRI)的一个挑战是由于在不同的饱和频率偏移处获取多个图像,因此扫描时间较长。k 空间欠采样策略常用于加速 MRI 采集,但这可能会引入伪影并降低信号噪声比(SNR)。为了在保持适当的图像质量的同时加速 CEST-MRI 采集,我们提出了一种基于注意力的多偏移深度学习重建网络(AMO-CEST),该网络采用了多径向 k 空间采样策略用于 CEST-MRI。AMO-CEST 还包含扩张卷积以扩大感受野和数据一致性模块以保留采样的 k 空间数据。我们在包含在临床前 3 T MRI 扫描仪上采集的 5760 个 CEST 图像的小鼠脑数据集上评估了所提出的方法。定量结果表明,AMO-CEST 与零填充方法相比具有明显的改进,在三个采集方向上 PSNR 提高了 11dB,SSIM 提高了 0.15,NMSE 降低了 [Formula: see text]。与其他基于深度学习的模型相比,AMO-CEST 在来自三个不同方向的图像中显示出了视觉和定量的改进。我们还提取了分子对比图,包括酰胺质子转移(APT)和中继核奥弗豪瑟增强(rNOE)。结果表明,从 AMO-CEST 的 CEST 图像中得出的 CEST 对比图与从原始高分辨率 CEST 图像中得出的对比图相当。所提出的 AMO-CEST 可以有效地从欠采样的 k 空间数据重建高质量的 CEST 图像,因此有可能加速 CEST-MRI 采集。