College of Management Science, Chengdu University of Technology, Sichuan, China.
College of Mathematics and Physics, Chengdu University of Technology, Sichuan, China.
PLoS One. 2024 May 22;19(5):e0302558. doi: 10.1371/journal.pone.0302558. eCollection 2024.
Accurate forecasts of water demand are a crucial factor in the strategic planning and judicious use of finite water resources within a region, underpinning sustainable socio-economic development. This study aims to compare the applicability of various artificial intelligence models for long-term water demand forecasting across different water use sectors. We utilized the Tuojiang River basin in Sichuan Province as our case study, comparing the performance of five artificial intelligence models: Genetic Algorithm optimized Back Propagation Neural Network (GA-BP), Extreme Learning Machine (ELM), Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Random Forest (RF). These models were employed to predict water demand in the agricultural, industrial, domestic, and ecological sectors using actual water demand data and relevant influential factors from 2005 to 2020. Model performance was evaluated based on the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), with the most effective model used for 2025 water demand projections for each sector within the study area. Our findings reveal that the GPR model demonstrated superior results in predicting water demand for the agricultural, domestic, and ecological sectors, attaining R2 values of 0.9811, 0.9338, and 0.9142 for the respective test sets. Also, the GA-BP model performed optimally in predicting industrial water demand, with an R2 of 0.8580. The identified optimal prediction model provides a useful tool for future long-term water demand forecasting, promoting sustainable water resource management.
准确预测用水量是在区域内进行战略规划和合理利用有限水资源的关键因素,是可持续社会经济发展的基础。本研究旨在比较各种人工智能模型在不同用水部门进行长期用水量预测的适用性。我们选取四川省沱江流域作为案例研究,比较了 5 种人工智能模型的性能:遗传算法优化的反向传播神经网络(GA-BP)、极限学习机(ELM)、高斯过程回归(GPR)、支持向量回归(SVR)和随机森林(RF)。这些模型用于根据 2005 年至 2020 年的实际用水量数据和相关影响因素,预测农业、工业、生活和生态用水部门的用水量。基于均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)评估模型性能,使用最有效的模型对研究区域内各部门 2025 年的用水量进行预测。研究结果表明,GPR 模型在预测农业、生活和生态用水部门的用水量方面表现最佳,在各自的测试集中,R2 值分别为 0.9811、0.9338 和 0.9142。此外,GA-BP 模型在预测工业用水量方面表现最佳,R2 值为 0.8580。确定的最优预测模型为未来的长期用水量预测提供了有用的工具,促进了水资源的可持续管理。