Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201.
J Neurosci. 2024 Jun 26;44(26):e1715232024. doi: 10.1523/JNEUROSCI.1715-23.2024.
MAGUK scaffold proteins play a central role in maintaining and modulating synaptic signaling, providing a framework to retain and position receptors, signaling molecules, and other synaptic components. In particular, the MAGUKs SAP102 and PSD-95 are essential for synaptic function at distinct developmental timepoints and perform both overlapping and unique roles. While their similar structures allow for common binding partners, SAP102 is expressed earlier in synapse development and is required for synaptogenesis, whereas PSD-95 expression peaks later and is associated with synapse maturation. PSD-95 and other key synaptic proteins organize into subsynaptic nanodomains that have a significant impact on synaptic transmission, but the nanoscale organization of SAP102 is unknown. How SAP102 is organized within the synapse, and how it relates spatially to PSD-95 on a nanometer scale, could underlie its unique functions and impact how SAP102 scaffolds synaptic proteins. Here we used DNA-PAINT super-resolution microscopy to measure SAP102 nano-organization and its spatial relationship to PSD-95 at individual synapses in mixed-sex rat cultured neurons. We found that like PSD-95, SAP102 accumulates in high-density subsynaptic nanoclusters (NCs). However, SAP102 NCs were smaller and denser than PSD-95 NCs across development. Additionally, only a subset of SAP102 NCs co-organized with PSD-95, revealing MAGUK nanodomains within individual synapses containing either one or both proteins. These MAGUK nanodomain types had distinct NC properties and were differentially enriched with the presynaptic release protein Munc13-1. This organization into both shared and distinct subsynaptic nanodomains may underlie the ability of SAP102 and PSD-95 to perform both common and unique synaptic functions.
MAGUK 支架蛋白在维持和调节突触信号中起着核心作用,为保留和定位受体、信号分子和其他突触成分提供了一个框架。特别是 MAGUKs SAP102 和 PSD-95 在不同的发育时间点对突触功能至关重要,它们具有重叠和独特的作用。虽然它们的相似结构允许有共同的结合伴侣,但 SAP102 在突触发育的早期表达,并参与突触发生,而 PSD-95 的表达高峰较晚,与突触成熟有关。PSD-95 和其他关键的突触蛋白组织成亚突触纳米区,对突触传递有重大影响,但 SAP102 的纳米级组织尚不清楚。SAP102 在突触中的组织方式,以及它在纳米尺度上与 PSD-95 的空间关系,可能是其独特功能的基础,并影响 SAP102 支架突触蛋白的方式。在这里,我们使用 DNA-PAINT 超分辨率显微镜来测量单个混合性别大鼠培养神经元突触中 SAP102 的纳米组织及其与 PSD-95 的空间关系。我们发现,与 PSD-95 一样,SAP102 聚集在高密度的亚突触纳米簇(NCs)中。然而,SAP102 NCs 在整个发育过程中的大小和密度都比 PSD-95 NCs 小而密。此外,只有 SAP102 NCs 的一部分与 PSD-95 共同组织,揭示了单个突触内含有一种或两种蛋白质的 MAGUK 纳米区。这些 MAGUK 纳米区类型具有不同的 NC 特性,并与突触前释放蛋白 Munc13-1 不同程度地富集。这种在共享和独特的亚突触纳米区中的组织可能是 SAP102 和 PSD-95 能够执行共同和独特的突触功能的基础。