Suppr超能文献

相似文献

3
SAP102 regulates synaptic AMPAR function through a CNIH-2-dependent mechanism.
J Neurophysiol. 2018 Oct 1;120(4):1578-1586. doi: 10.1152/jn.00731.2017. Epub 2018 Aug 1.
4
SAP102 is a highly mobile MAGUK in spines.
J Neurosci. 2010 Mar 31;30(13):4757-66. doi: 10.1523/JNEUROSCI.6108-09.2010.
5
6
Differential nanoscale organization of excitatory synapses onto excitatory vs. inhibitory neurons.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2315379121. doi: 10.1073/pnas.2315379121. Epub 2024 Apr 16.
7
Synaptic state-dependent functional interplay between postsynaptic density-95 and synapse-associated protein 102.
J Neurosci. 2013 Aug 14;33(33):13398-409. doi: 10.1523/JNEUROSCI.6255-11.2013.
8
N-terminal SAP97 isoforms differentially regulate synaptic structure and postsynaptic surface pools of AMPA receptors.
Hippocampus. 2017 Jun;27(6):668-682. doi: 10.1002/hipo.22723. Epub 2017 Mar 20.
9
Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20953-8. doi: 10.1073/pnas.0811025106. Epub 2008 Dec 22.
10
MAGUKs, synaptic development, and synaptic plasticity.
Neuroscientist. 2011 Oct;17(5):493-512. doi: 10.1177/1073858410386384. Epub 2011 Apr 15.

引用本文的文献

1
Trans-synaptic molecular context of NMDA receptor nanodomains.
Nat Commun. 2025 Aug 12;16(1):7460. doi: 10.1038/s41467-025-62766-y.
2
Involvement of membrane palmitoylated protein 6 (MPP6) in synapses of mouse cerebrum.
Histochem Cell Biol. 2025 May 13;163(1):50. doi: 10.1007/s00418-025-02378-1.
3
Large Donor CRISPR for Whole-Coding Sequence Replacement of Cell Adhesion Molecule LRRTM2.
J Neurosci. 2025 Feb 12;45(7):e1461242024. doi: 10.1523/JNEUROSCI.1461-24.2024.
4
3D Super-Resolution Imaging of PSD95 Reveals an Abundance of Diffuse Protein Supercomplexes in the Mouse Brain.
ACS Chem Neurosci. 2025 Jan 1;16(1):40-51. doi: 10.1021/acschemneuro.4c00684. Epub 2024 Dec 19.
5
Distinct active zone protein machineries mediate Ca channel clustering and vesicle priming at hippocampal synapses.
Nat Neurosci. 2024 Sep;27(9):1680-1694. doi: 10.1038/s41593-024-01720-5. Epub 2024 Aug 19.
6
Differential nanoscale organization of excitatory synapses onto excitatory vs. inhibitory neurons.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2315379121. doi: 10.1073/pnas.2315379121. Epub 2024 Apr 16.
7
Trans-synaptic molecular context of NMDA receptor nanodomains.
bioRxiv. 2025 Feb 1:2023.12.22.573055. doi: 10.1101/2023.12.22.573055.

本文引用的文献

1
Differential nanoscale organization of excitatory synapses onto excitatory vs. inhibitory neurons.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2315379121. doi: 10.1073/pnas.2315379121. Epub 2024 Apr 16.
2
Spatial proteomics in neurons at single-protein resolution.
Cell. 2024 Mar 28;187(7):1785-1800.e16. doi: 10.1016/j.cell.2024.02.045.
3
Assessing crosstalk in simultaneous multicolor single-molecule localization microscopy.
Cell Rep Methods. 2023 Sep 25;3(9):100571. doi: 10.1016/j.crmeth.2023.100571. Epub 2023 Sep 1.
4
Correlative Assembly of Subsynaptic Nanoscale Organizations During Development.
Front Synaptic Neurosci. 2022 May 24;14:748184. doi: 10.3389/fnsyn.2022.748184. eCollection 2022.
7
Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength.
Sci Adv. 2021 Aug 20;7(34). doi: 10.1126/sciadv.abf3126. Print 2021 Aug.
8
MAGUKs are essential, but redundant, in long-term potentiation.
Proc Natl Acad Sci U S A. 2021 Jul 13;118(28). doi: 10.1073/pnas.2107585118.
9
Protein-protein interactions at the NMDA receptor complex: From synaptic retention to synaptonuclear protein messengers.
Neuropharmacology. 2021 Jun 1;190:108551. doi: 10.1016/j.neuropharm.2021.108551. Epub 2021 Apr 2.
10
Regulation of synaptic nanodomain by liquid-liquid phase separation: A novel mechanism of synaptic plasticity.
Curr Opin Neurobiol. 2021 Aug;69:84-92. doi: 10.1016/j.conb.2021.02.004. Epub 2021 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验