Suppr超能文献

双能 CT 肌肉脂肪分数作为一种新的成像生物标志物,用于评估危重症患者的身体成分和预测生存情况。

Dual-Energy CT muscle fat fraction as a new imaging biomarker of body composition and survival predictor in critically ill patients.

机构信息

Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

Eur Radiol. 2024 Nov;34(11):7408-7418. doi: 10.1007/s00330-024-10779-4. Epub 2024 May 22.

Abstract

OBJECTIVE

To analyze changes in the muscular fat fraction (FF) during immobilization at the intensive care unit (ICU) using dual-energy CT (DECT) and evaluate the predictive value of the DECT FF as a new imaging biomarker for morbidity and survival.

METHODS

Immobilized ICU patients (n = 81, 43.2% female, 60.3 ± 12.7 years) were included, who received two dual-source DECT scans (CT1, CT2) within a minimum interval of 10 days between 11/2019 and 09/2022. The DECT FF was quantified for the posterior paraspinal muscle by two radiologists using material decomposition. The skeletal muscle index (SMI), muscle radiodensity attenuation (MRA), subcutaneous-/ visceral adipose tissue area (SAT, VAT), and waist circumference (WC) were assessed. Reasons for ICU admission, clinical scoring systems, therapeutic regimes, and in-hospital mortality were noted. Linear mixed models, Cox regression, and intraclass correlation coefficients were employed.

RESULTS

Between CT1 and CT2 (median 21 days), the DECT FF increased (from 20.9% ± 12.0 to 27.0% ± 12.0, p = 0.001). The SMI decreased (35.7 cm/m ± 8.8 to 31.1 cm/m ± 7.6, p < 0.001) as did the MRA (29 HU ±  10 to 26 HU ± 11, p = 0.009). WC, SAT, and VAT did not change. In-hospital mortality was 61.5%. In multivariable analyses, only the change in DECT FF was associated with in-hospital mortality (hazard ratio (HR) 9.20 [1.78-47.71], p = 0.008), renal replacement therapy (HR 48.67 [9.18-258.09], p < 0.001), and tracheotomy at ICU (HR 37.22 [5.66-245.02], p < 0.001). Inter-observer reproducibility of DECT FF measurements was excellent (CT1: 0.98 [0.97; 0.99], CT2: 0.99 [0.96-0.99]).

CONCLUSION

The DECT FF appears to be suitable for detecting increasing myosteatosis. It seems to have predictive value as a new imaging biomarker for ICU patients.

CLINICAL RELEVANCE STATEMENT

The dual-energy CT muscular fat fraction appears to be a robust imaging biomarker to detect and monitor myosteatosis. It has potential for prognosticating, risk stratifying, and thereby guiding therapeutic nutritional regimes and physiotherapy in critically ill patients.

KEY POINTS

The dual-energy CT muscular fat fraction detects increasing myosteatosis caused by immobilization. Change in dual-energy CT muscular fat fraction was a predictor of  in-hospital morbidity and mortality. Dual-energy CT muscular fat fraction had a predictive value superior to established CT body composition parameters.

摘要

目的

使用双能 CT(DECT)分析重症监护病房(ICU)中肌肉脂肪分数(FF)在固定时的变化,并评估 DECT FF 作为新的成像生物标志物对发病率和生存率的预测价值。

方法

纳入了 81 名接受固定治疗的 ICU 患者(43.2%为女性,60.3±12.7 岁),他们在 2019 年 11 月至 2022 年 9 月期间至少间隔 10 天接受了两次双源 DECT 扫描(CT1、CT2)。两名放射科医生使用物质分解法对后脊柱旁肌肉的 DECT FF 进行定量。评估了骨骼肌指数(SMI)、肌肉放射性密度衰减(MRA)、皮下/内脏脂肪组织面积(SAT、VAT)和腰围(WC)。记录了 ICU 入院原因、临床评分系统、治疗方案和住院死亡率。使用线性混合模型、Cox 回归和组内相关系数进行分析。

结果

在 CT1 和 CT2 之间(中位数为 21 天),DECT FF 增加(从 20.9%±12.0 增加到 27.0%±12.0,p=0.001)。SMI 下降(从 35.7cm/m±8.8 下降到 31.1cm/m±7.6,p<0.001),MRA 也下降(从 29HU±10 下降到 26HU±11,p=0.009)。WC、SAT 和 VAT 没有变化。住院死亡率为 61.5%。多变量分析显示,只有 DECT FF 的变化与住院死亡率相关(危险比(HR)9.20[1.78-47.71],p=0.008)、肾脏替代治疗(HR 48.67[9.18-258.09],p<0.001)和 ICU 气管切开术(HR 37.22[5.66-245.02],p<0.001)。DECT FF 测量的观察者间重复性极好(CT1:0.98[0.97;0.99],CT2:0.99[0.96-0.99])。

结论

DECT FF 似乎适合检测肌肉脂肪增多。它似乎作为一种新的成像生物标志物,对 ICU 患者具有预测价值。

临床意义

双能 CT 肌肉脂肪分数似乎是一种强大的成像生物标志物,可用于检测和监测肌肉脂肪增多。它具有预测、风险分层的潜力,从而指导危重症患者的治疗性营养方案和物理治疗。

关键点

双能 CT 肌肉脂肪分数检测到因固定而导致的肌肉脂肪增多。DECT 肌肉脂肪分数的变化是住院发病率和死亡率的预测指标。DECT 肌肉脂肪分数的预测价值优于现有的 CT 体成分参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6299/11519288/68907e459459/330_2024_10779_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验