文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于肿瘤学应用的防污材料的现状、挑战与前景

Current status, challenges and prospects of antifouling materials for oncology applications.

作者信息

Zhang Yingfeng, Sun Congcong

机构信息

University-Town Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Front Oncol. 2024 May 8;14:1391293. doi: 10.3389/fonc.2024.1391293. eCollection 2024.


DOI:10.3389/fonc.2024.1391293
PMID:38779096
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11109453/
Abstract

Targeted therapy has become crucial to modern translational science, offering a remedy to conventional drug delivery challenges. Conventional drug delivery systems encountered challenges related to solubility, prolonged release, and inadequate drug penetration at the target region, such as a tumor. Several formulations, such as liposomes, polymers, and dendrimers, have been successful in advancing to clinical trials with the goal of improving the drug's pharmacokinetics and biodistribution. Various stealth coatings, including hydrophilic polymers such as PEG, chitosan, and polyacrylamides, can form a protective layer over nanoparticles, preventing aggregation, opsonization, and immune system detection. As a result, they are classified under the Generally Recognized as Safe (GRAS) category. Serum, a biological sample, has a complex composition. Non-specific adsorption of chemicals onto an electrode can lead to fouling, impacting the sensitivity and accuracy of focused diagnostics and therapies. Various anti-fouling materials and procedures have been developed to minimize the impact of fouling on specific diagnoses and therapies, leading to significant advancements in recent decades. This study provides a detailed analysis of current methodologies using surface modifications that leverage the antifouling properties of polymers, peptides, proteins, and cell membranes for advanced targeted diagnostics and therapy in cancer treatment. In conclusion, we examine the significant obstacles encountered by present technologies and the possible avenues for future study and development.

摘要

靶向治疗已成为现代转化科学的关键,为传统药物递送挑战提供了一种解决方案。传统药物递送系统面临着与溶解度、缓释以及在肿瘤等靶区域药物渗透不足相关的挑战。几种制剂,如脂质体、聚合物和树枝状大分子,已成功推进到临床试验阶段,目的是改善药物的药代动力学和生物分布。各种隐身涂层,包括聚乙二醇、壳聚糖和聚丙烯酰胺等亲水性聚合物,可在纳米颗粒上形成保护层,防止聚集、调理作用和免疫系统检测。因此,它们被归类为一般认为安全(GRAS)类别。血清作为一种生物样本,其成分复杂。化学物质在电极上的非特异性吸附会导致污染,影响聚焦诊断和治疗的灵敏度和准确性。已开发出各种防污材料和程序,以尽量减少污染对特定诊断和治疗的影响,近几十年来取得了重大进展。本研究详细分析了当前利用聚合物、肽、蛋白质和细胞膜的防污特性进行表面修饰的方法,用于癌症治疗中的先进靶向诊断和治疗。总之,我们研究了当前技术所面临的重大障碍以及未来研究和发展的可能途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/fb929d066162/fonc-14-1391293-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/5326a2658994/fonc-14-1391293-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/ebf6414794be/fonc-14-1391293-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/9aa0a3d2370a/fonc-14-1391293-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/2ff7c8828874/fonc-14-1391293-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/97c7a9602eb0/fonc-14-1391293-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/750bc8461684/fonc-14-1391293-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/217cb156d175/fonc-14-1391293-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/4fe357a678d3/fonc-14-1391293-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/d1597d9f9edc/fonc-14-1391293-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/fb929d066162/fonc-14-1391293-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/5326a2658994/fonc-14-1391293-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/ebf6414794be/fonc-14-1391293-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/9aa0a3d2370a/fonc-14-1391293-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/2ff7c8828874/fonc-14-1391293-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/97c7a9602eb0/fonc-14-1391293-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/750bc8461684/fonc-14-1391293-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/217cb156d175/fonc-14-1391293-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/4fe357a678d3/fonc-14-1391293-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/d1597d9f9edc/fonc-14-1391293-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/11109453/fb929d066162/fonc-14-1391293-g010.jpg

相似文献

[1]
Current status, challenges and prospects of antifouling materials for oncology applications.

Front Oncol. 2024-5-8

[2]
Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy.

J Control Release. 2020-11-10

[3]
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).

Astrobiology. 2022-6

[4]
Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings.

Acta Biomater. 2017-9-1

[5]
Antifouling membranes for sustainable water purification: strategies and mechanisms.

Chem Soc Rev. 2016-10-24

[6]
[Development of antituberculous drugs: current status and future prospects].

Kekkaku. 2006-12

[7]
Antifouling strategies for electrochemical sensing in complex biological media.

Mikrochim Acta. 2024-2-16

[8]
Functional ferrocene polymer multilayer coatings for implantable medical devices: Biocompatible, antifouling, and ROS-sensitive controlled release of therapeutic drugs.

Acta Biomater. 2021-4-15

[9]
The impact of antifouling layers in fabricating bioactive surfaces.

Acta Biomater. 2021-5

[10]
Dual functionalized brush copolymers as versatile antifouling coatings.

J Mater Chem B. 2023-3-30

引用本文的文献

[1]
Lysosome-Targeted Bifunctional Therapeutics Induce Autodynamic Cancer Therapy.

Adv Sci (Weinh). 2024-11

本文引用的文献

[1]
Faa1 membrane binding drives positive feedback in autophagosome biogenesis via fatty acid activation.

J Cell Biol. 2024-7-1

[2]
Investigating the effectiveness of iron nanoparticles synthesized by green synthesis method in chemoradiotherapy of colon cancer.

Heliyon. 2024-3-16

[3]
Revolutionizing lymph node metastasis imaging: the role of drug delivery systems and future perspectives.

J Nanobiotechnology. 2024-3-29

[4]
Harnessing PD-1 cell membrane-coated paclitaxel dimer nanoparticles for potentiated chemoimmunotherapy.

Biomed Pharmacother. 2024-5

[5]
Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices.

Angew Chem Weinheim Bergstr Ger. 2021-9-6

[6]
Cationic dextrin nanoparticles for effective intracellular delivery of cytochrome in cancer therapy.

RSC Chem Biol. 2023-11-24

[7]
Engineering innovations in medicine and biology: Revolutionizing patient care through mechanical solutions.

Heliyon. 2024-2-15

[8]
Multimodal neuro-nanotechnology: Challenging the existing paradigm in glioblastoma therapy.

Proc Natl Acad Sci U S A. 2024-2-20

[9]
Factors influencing initial bacterial adhesion to antifouling surfaces studied by single-cell force spectroscopy.

iScience. 2024-1-6

[10]
Calming the Nerves via the Immune Instructive Physiochemical Properties of Self-Assembling Peptide Hydrogels.

Adv Sci (Weinh). 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索