Suppr超能文献

探索美国气象因素对细颗粒物(PM)影响的异质性和动态性:一种基于时空可变系数模型的分布式学习方法。

Exploring heterogeneity and dynamics of meteorological influences on US PM: A distributed learning approach with spatiotemporal varying coefficient models.

作者信息

Wang Lily, Wang Guannan, Gao Annie S

机构信息

Department of Statistics, George Mason University, 4400 University Drive, MS 4A7, Fairfax, 22030, VA, USA.

Department of Mathematics, William & Mary, 120 Jones Hall, Williamsburg, 23185, VA, USA.

出版信息

Spat Stat. 2024 Jun;61. doi: 10.1016/j.spasta.2024.100826. Epub 2024 Apr 25.

Abstract

Particulate matter (PM) has emerged as a primary air quality concern due to its substantial impact on human health. Many recent research works suggest that PM concentrations depend on meteorological conditions. Enhancing current pollution control strategies necessitates a more holistic comprehension of PM dynamics and the precise quantification of spatiotemporal heterogeneity in the relationship between meteorological factors and PM levels. The spatiotemporal varying coefficient model stands as a prominent spatial regression technique adept at addressing this heterogeneity. Amidst the challenges posed by the substantial scale of modern spatiotemporal datasets, we propose a pioneering distributed estimation method (DEM) founded on multivariate spline smoothing across a domain's triangulation. This DEM algorithm ensures an easily implementable, highly scalable, and communication-efficient strategy, demonstrating almost linear speedup potential. We validate the effectiveness of our proposed DEM through extensive simulation studies, demonstrating that it achieves coefficient estimations akin to those of global estimators derived from complete datasets. Applying the proposed model and method to the US daily PM and meteorological data, we investigate the influence of meteorological variables on PM concentrations, revealing both spatial and seasonal variations in this relationship.

摘要

颗粒物(PM)因其对人类健康的重大影响,已成为空气质量的主要关注点。最近的许多研究表明,PM浓度取决于气象条件。加强当前的污染控制策略需要更全面地理解PM动态以及气象因素与PM水平之间关系的时空异质性的精确量化。时空变系数模型是一种突出的空间回归技术,擅长解决这种异质性。在现代时空数据集规模巨大带来的挑战中,我们提出了一种基于跨域三角剖分的多元样条平滑的开创性分布式估计方法(DEM)。这种DEM算法确保了一种易于实现、高度可扩展且通信高效的策略,展现出几乎线性的加速潜力。我们通过广泛的模拟研究验证了所提出的DEM的有效性,表明它实现的系数估计与从完整数据集得出的全局估计器的系数估计相似。将所提出的模型和方法应用于美国每日PM和气象数据,我们研究了气象变量对PM浓度的影响,揭示了这种关系中的空间和季节变化。

相似文献

引用本文的文献

本文引用的文献

1
Spatial Modeling With Spatially Varying Coefficient Processes.具有空间变化系数过程的空间建模
J Am Stat Assoc. 2003;98(462):387-396. doi: 10.1198/016214503000170. Epub 2011 Dec 31.
4
The 17-y spatiotemporal trend of PM and its mortality burden in China.中国 PM 及其死亡负担的 17 年时空趋势。
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25601-25608. doi: 10.1073/pnas.1919641117. Epub 2020 Sep 21.
5
The Effects of Air Pollution on COVID-19 Related Mortality in Northern Italy.空气污染对意大利北部新冠肺炎相关死亡率的影响
Environ Resour Econ (Dordr). 2020;76(4):611-634. doi: 10.1007/s10640-020-00486-1. Epub 2020 Aug 4.
7
A Case Study Competition Among Methods for Analyzing Large Spatial Data.大型空间数据分析方法的案例研究竞赛
J Agric Biol Environ Stat. 2019;24(3):398-425. doi: 10.1007/s13253-018-00348-w. Epub 2018 Dec 14.
9
Scalar-on-Image Regression via the Soft-Thresholded Gaussian Process.基于软阈值高斯过程的图像标量回归
Biometrika. 2018 Mar;105(1):165-184. doi: 10.1093/biomet/asx075. Epub 2018 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验