Suppr超能文献

通过直接硫酰化途径中两种酶的平行进化工程构建甲硫氨酸营养缺陷型,使其能够在基本培养基中恢复生长。

Engineering of methionine-auxotroph via parallel evolution of two enzymes from direct-sulfurylation pathway enables its recovery in minimal medium.

作者信息

Gabay Matan, Stern Inbar, Gruzdev Nadya, Cohen Adi, Adriana-Lifshits Lucia, Ansbacher Tamar, Yadid Itamar, Gal Maayan

机构信息

Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.

Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel.

出版信息

Metab Eng Commun. 2024 May 10;18:e00236. doi: 10.1016/j.mec.2024.e00236. eCollection 2024 Jun.

Abstract

Methionine biosynthesis relies on the sequential catalysis of multiple enzymes. , the main bacteria used in research and industry for protein production and engineering, utilizes the three-step trans-sulfurylation pathway catalyzed by L-homoserine O-succinyl transferase, cystathionine gamma synthase and cystathionine beta lyase to convert L-homoserine to L-homocysteine. However, most bacteria employ the two-step direct-sulfurylation pathway involving L-homoserine O-acetyltransferases and O-acetyl homoserine sulfhydrylase. We previously showed that a methionine-auxotroph strain (MG1655) with deletion of , encoding for L-homoserine O-succinyl transferase, and , encoding for cystathionine gamma synthase, could be complemented by introducing the genes , encoding for L-homoserine O-acetyltransferases and , encoding for O-acetyl homoserine sulfhydrylase, from various sources, thus altering the methionine biosynthesis metabolic pathway to direct-sulfurylation. However, introducing and from failed to complement methionine auxotrophy. Herein, we generated a randomized genetic library based on the and of and transformed it into a methionine-auxotrophic strain lacking the and genes. Through multiple enrichment cycles, we successfully isolated active clones capable of growing in M9 minimal media. The dominant mutations in the evolved methionine-autotrophs were L315P and H46R. Interestingly, we found that a gene encoding only the N-terminus 106 out of 438 amino acids of the wild-type MetY enzyme is functional and supports the growth of the methionine auxotroph. Recloning the new genes into the original plasmid and transforming them to methionine auxotroph validated their functionality. These results show that directed enzyme-evolution enables fast and simultaneous engineering of new active variants within the methionine direct-sulfurylation pathway, leading to efficient complementation.

摘要

甲硫氨酸的生物合成依赖于多种酶的顺序催化。在研究和工业中用于蛋白质生产和工程的主要细菌利用由L-高丝氨酸O-琥珀酰转移酶、胱硫醚γ-合酶和胱硫醚β-裂解酶催化的三步转硫途径将L-高丝氨酸转化为L-高半胱氨酸。然而,大多数细菌采用涉及L-高丝氨酸O-乙酰转移酶和O-乙酰高丝氨酸硫氢酶的两步直接硫酰化途径。我们之前表明,缺失编码L-高丝氨酸O-琥珀酰转移酶的metA和编码胱硫醚γ-合酶的metB的甲硫氨酸营养缺陷型菌株(MG1655),可以通过引入来自各种来源的编码L-高丝氨酸O-乙酰转移酶的metX和编码O-乙酰高丝氨酸硫氢酶的metY基因来互补,从而将甲硫氨酸生物合成代谢途径改变为直接硫酰化途径。然而,从大肠杆菌引入metX和metY未能互补甲硫氨酸营养缺陷。在此,我们基于大肠杆菌的metX和metY生成了一个随机遗传文库,并将其转化到缺乏metA和metB基因的甲硫氨酸营养缺陷型菌株中。通过多个富集循环,我们成功分离出能够在M9基本培养基中生长的活性克隆。进化后的甲硫氨酸自养型菌株中的主要metY突变是L315P和H46R。有趣的是,我们发现一个仅编码野生型MetY酶438个氨基酸中N端106个氨基酸的metY基因是有功能的,并支持甲硫氨酸营养缺陷型菌株的生长。将新基因重新克隆到原始质粒中并将它们转化到甲硫氨酸营养缺陷型菌株中验证了它们的功能。这些结果表明,定向酶进化能够在甲硫氨酸直接硫酰化途径内快速同时工程化新的活性变体,从而实现高效互补。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feee/11109467/1d094d7ba802/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验